Advanced Treatment of Municipal Wastewater Effluent by Coagulation/Sedimentation and Chlorine Dioxide Disinfection

2011 ◽  
Vol 71-78 ◽  
pp. 2792-2796
Author(s):  
Li Hua Cheng ◽  
Ai Hua He ◽  
Xue Jun Bi ◽  
Qi Wang

Due to increasing water scarcity, reclamation and reuse of the secondary effluent of wastewater treatment plant are widely concerned in many countries. Before reuse, the residual contaminant in the secondary effluent should be further removed to guarantee safe reuse. Coagulation/sedimentation and subsequent chlorine dioxide(ClO2) disinfection was adopted for tertiary treatment of secondary effluent. Selection of coagulant and optimization of tertiary treatment parameters were performed in this study. The results showed that coagulation could remove turbidity and total phosphours(TP) effectively. Polyaluminium chloride(PAC) was the most suitable coagulant. The optimal coagulation condition was as follows: PAC dosage of 10mg/L(measured as Al3+), reaction time of 20 min, settling time of 40 min, in this case, the average removal rate of turbidity, color, UV254, TP and TOC could reach to 58.2%, 22.8%, 18.2%, 60.6% and 22.2%, respectively. ClO2could inactive bacteria andE. colieffectively. ClO2could further remove UV254, color and TOC. In case of ClO2dosage of 5mg/L, the sterilization efficiency could reach 100%, and the removal rate of UV254, color and TOC was higher than 25%, 70% and 25%, respectively. In the optimal condition, the removal efficiency of residual contaminant by the combination process was as follows: UV254of 45.9%, color of 76.5%, TOC of 66.7%, turbidity of 61.9% and TP of 96.3%.

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1339
Author(s):  
Javier Bayo ◽  
Sonia Olmos ◽  
Joaquín López-Castellanos

This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate between forms, and reporting a daily emission of 1.6 × 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form, with 10 different colors and sizes mainly between 1–2 mm. Future efforts should be dedicated to source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal.


2016 ◽  
Vol 74 (11) ◽  
pp. 2727-2735 ◽  
Author(s):  
Yixuan Yang ◽  
Fei Tang ◽  
Xiaoling Su ◽  
Hua Yin ◽  
Fei Ge

To access better removal of nutrients with algae-based techniques, a dominant alga from real municipal wastewater was identified and its capacity in removing low concentrations of nitrogen (NH+4 or NO−3) and phosphorus (PO3−4) was evaluated. Results showed that Oedogonium brevicingulatum, a filamentous green alga, was confirmed as the dominant alga in the secondary effluent of a municipal wastewater treatment plant by polymerase chain reaction-denaturing gradient gel electrophoresis. Low concentrations of NH+4 or NO−3 (≤5 mg N L−1) and PO3−4 (≤0.5 mg P L−1) were 100% removed by the algae in a 7-d test. The maximum nutrient removal rate (Vmax) and the half-saturation constant (Km) for NH+4 (10.03 ± 0.95 mg g−1d−1 and 0.19 ± 0.03 mg L−1) and NO−3 (8.43 ± 0.21 mg g−1 d−1 and 0.27 ± 0.11 mg L−1) indicated the uptake capability for NH+4 is higher than that for NO−3. Meanwhile, it showed higher affinity for PO3−4 (Vmax: 1.42 ± 0.02 mg g−1 d−1; Km: 0.02 ± 0.00 mg L−1) with NH+4 as nitrogen source than that (Vmax: 1.24 ± 0.15 mg g−1 d−1; Km: 0.06 ± 0.03 mg L−1) with NO−3 as nitrogen source. Moreover, nutrient removal efficiencies were observed steady when nitrogen/phosphorus ratio ranged from 5:1 to 20:1. These results suggest that the dominant algae from municipal wastewater have potentials to be applied in nutrient removal.


2013 ◽  
Vol 67 (12) ◽  
pp. 2761-2767 ◽  
Author(s):  
Ruihua Li ◽  
Jianmin Niu ◽  
Xinmin Zhan ◽  
Bo Liu

The efficacy of iron(II) sulfide (FeS)-based autotrophic denitrification in simultaneous nitrogen and phosphorus removal from wastewater was studied with batch experiments. It was efficient at a wide pH range of 5–9, and temperature range of 10–40 °C. The concentrations of NH4+-N, Mg2+ and HCO3− in the wastewater should be kept over 7.8, 0.24 and 30 mg L−1 for efficient nitrate (NO3−-N) reduction, respectively. The NO3−-N removal rate increased from 0 to 82 mg L−1 d−1 and then leveled off when the NO3−-N concentration increased from 0 to 415 mg L−1 and then to 700 mg L−1, respectively. The NO3−-N removal rate quickly increased, leveled off, and then sharply decreased when the PO43−-P concentration increased from 0 to 0.1 mg L−1, then to 114.0 mg L−1, and further to 683.8 mg L−1, respectively. The PO43−-P removal was over 98% when the PO43−-P concentration ranged 0–683.3 mg L−1. During treatment of the secondary effluent of a local municipal wastewater treatment plant containing NO3−-N of 14.9 mg L−1 and total phosphorus (TP) of 3.9 mg L−1, NO3−-N was reduced to 1.1 mg L−1 and TP was completely removed.


2021 ◽  
Author(s):  
Javier Bayo ◽  
Sonia Olmos ◽  
Joaquín López-Castellanos

Abstract This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate among forms, and reporting a daily emission of 1.6 x 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form. Future efforts should be carried on source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal.


1994 ◽  
Vol 30 (4) ◽  
pp. 125-132 ◽  
Author(s):  
D. Carnimeo ◽  
E. Contini ◽  
R. Di Marino ◽  
F. Donadio ◽  
L. Liberti ◽  
...  

The pilot investigation on the use of UV as an alternative disinfectant to NaOCI was started in 1992 at Trani (South Italy) municipal wastewater treatment plant (335 m3/h). The results collected after six months continuous operation enabled us to compare UV and NaOCl disinfection effectiveness on the basis of secondary effluent characteristics, quantify photoreactivation effects, evidence possible DBP formation and assess costs.


2013 ◽  
Vol 838-841 ◽  
pp. 2712-2716
Author(s):  
Yong Tu ◽  
Yong Gang Bai ◽  
Yong Chen ◽  
Wei Jing Liu ◽  
Jun Xu ◽  
...  

The research on ultrafiltration membrane assisted by powdered zeolite for the treatment of secondary effluent from a municipal wastewater treatment plant was studied. The results show that membrane fouling rate is reduced by pre-coating the ultrafiltration membrane with powdered zeolite, and the treatment performance of secondary effluent is enhanced. UV-vis, three-dimensional excitation emission matrix (3D-EEM) fluorescence spectra and scanning electron microscopy (SEM) images for ultrafiltration were also discussed.


2011 ◽  
Vol 64 (12) ◽  
pp. 2352-2361 ◽  
Author(s):  
A. Luczkiewicz ◽  
K. Jankowska ◽  
R. Bray ◽  
E. Kulbat ◽  
B. Quant ◽  
...  

The main objective of the study was to assess the potential of three systems (UV irradiation, ozonation, and micro/ultrafiltration) operated in a pilot scale in removal of antimicrobial-resistant fecal bacteria from secondary effluent of the local wastewater treatment plant (700,000 population equivalent). The effectiveness of the processes was analysed using the removal ratio of fecal indicators (Escherichia coli and Enterococcus spp.). The susceptibility of fecal indicators to antimicrobial agents important in human therapy was examined. Resistance to nitrofurantoin and erythromycin was common among enterococci and followed by resistance to fluoroquinolones and tetracycline. Resistance to high-level aminoglycosides and glycopeptides was also observed. E. coli isolates were most frequently resistant to penicillins and tetracycline. The extended-spectrum beta-lactamase-producing E. coli was detected once, after ozonation. Substantial attention should be paid to the E. coli and enterococci resistant to three or more chemical classes of antimicrobials (MAR), which in general constituted up to 15 and 49% of the tested isolates, respectively. Although the applied methods were effective in elimination of fecal indicators (removal efficiency up to 99.99%), special attention has to be paid to the application of sufficient disinfection and operation conditions to avoid selection of antimicrobial resistant bacteria.


2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 361-368 ◽  
Author(s):  
L. Bonomo ◽  
G. Pastorelli ◽  
E. Quinto ◽  
G. Rinaldi

Two bench-scale reactors, fed with the secondary effluent of a municipal wastewater treatment plant (WWTP), were used in order to study tertiary nitrification in pure oxygen moving bed biofilm reactors (PO-MBBRs) with patented KMT® media as biofilm carriers. The process allowed to measure very high nitrification rates, both in ammonia limiting conditions (up to 7 gN m−2 d−1; oxygen-to-ammonia nitrogen ratio higher than 3–4 mgO2 (mgN)−1) and in oxygen limiting conditions (up to 8 gN m−2 d−1; oxygen-to-ammonia nitrogen ratio lower than 1–2 mgO2 (mgN)−1). Since the process proved flexible and reliable, it is suitable for full-scale application to municipal WWTPs. Typical application could regard, but is not limited to, tertiary nitrification of secondary effluent from existing high-purity oxygen activated sludge systems designed to achieve only organic carbon removal.


Sign in / Sign up

Export Citation Format

Share Document