Design of Breathing Air-Condition Cabinet Based on Capillary Tube Combined with Heat Exchange and Dehumidification

2011 ◽  
Vol 71-78 ◽  
pp. 3415-3418
Author(s):  
Xiao Rui Liu ◽  
Bao Yu Li ◽  
Dong Tai Han ◽  
Xue Yong Lv

Capillary tube, a efficient and energy conservation heat exchanger, has been widely used abroad. In china, the research of air-condition terminal based on capillary tube is focus on the planar radiation at the moment. But kinds of problems such as moisture condensation happen because of the different climate of China. So we put forward developing a kind of breathing air-condition cabinet combined with heat exchange and dehumidification, and do some calculation about major parameter. We will do in-depth study on cabinet's flow field so that it can be high-efficiency.

Author(s):  
Koji Iiyama ◽  
Akiko Kaneko ◽  
Yutaka Abe ◽  
Yutaka Suzuki

At present, a microchannel heat exchanger is requested to achieve high efficiency in small size energy equipments. In order to clarify the heat transfer mechanism in a microchannel heat exchanger, knowledge on the thermal hydraulic characteristics of condensation flow in the channels is essential. However, study on the thermal hydraulic characteristics of condensation flow in a microchannel is hardly conducted except visualization of flow patterns. Objectives of the present study are to estimate the heat transfer performance of the present device and to observe the condensation behavior of vapor flow to clarify the thermal hydraulic characteristics of condensation flow in a capillary tube. As the results, it is confirmed that the microchannel heat exchanger realizes heat exchange of 7 kW when phase changes. In a single capillary glass tube as a simulated unit microchannel, the annular flow, the injection flow and the bubbly flow in a capillary tube are observed. According to the comparison of the present device and the glass tube experiment, it is suggested that the flow structure in the microchannel heat exchanger is almost same as that in the glass capillary tube.


2010 ◽  
Vol 6 (1) ◽  
Author(s):  
Benyin Chai ◽  
Min Shao ◽  
Xuanyou Li ◽  
Shenjie Zhou ◽  
Yongchun Shi

Oscillating heat pipe is a new type high efficiency heat-transfer element. Its development and design attract increasing attention. This paper describes a numerical simulation for investigating on the flow and heat exchange performance of an oscillating heat pipe heat exchanger. The influences of the arrangement of heat pipe, the inlet temperature and the flux of hot air were explored. The results show that the heat exchange of staggered arrangement is more efficient than the aligned one. The influence of temperature difference on the heat exchanger by hot air flux is more than hot air inlet temperature.


2014 ◽  
Vol 984-985 ◽  
pp. 784-791
Author(s):  
C. P. Christin Raj ◽  
S.A. Ananthapuri Surendran ◽  
B. Amjathkhan ◽  
J.Antony Baksi Metilda ◽  
S.Eben Devaraj ◽  
...  

In order to reduce the entry of moisture, salt, sand and other external contaminations into the nacelle and also to reduce the fan noise which reaches the exterior, in this work a study of an innovative cooling system for off-shore wind turbine has been carried out. The new cooling technique is based on the use of nanofluids (engineered colloidal suspensions of nanoparticles in a base fluid). Nanofluids allow to increase the thermal conductivity of fluids and so to reduce the heat exchange surface and the heat transfer fluid flow rate due to the increased heat capacity. To reduce the amount of nanofluids circulating in the cooling system, the performance of a two-stage cooling circuit has been investigated. The first circuit takes the heat out of the generator and of the accessories whereas the second circuit, coupled with the first via an heat exchanger, dissipates the heat into the ambient. For the second circuit two options have been investigated. In the first solution the waste heat is dispersed using the tower as dissipator whereas in the second option the waste heat is exchanged with a titanium heat exchanger using marine water as heat transfer fluid.Both solutions assure high efficiency of heat exchange, long technical life expectancy and limited maintenance requirements.Keywords: Wind turbine, nanofluid, cooling system.


Author(s):  
Л. А. Кущев ◽  
В. Н. Мелькумов ◽  
Н. Ю. Саввин

Постановка задачи. Рассматривается теплообменный процесс, протекающий в модифицированном гофрированном межпластинном канале интенсифицированного пластинчатого теплообменного аппарата с повышенной турбулизацией теплоносителя. Необходимо разработать компьютерную модель движения теплоносителя в диапазоне скоростей 0,1-1,5 м/с и определить коэффициент турбулизации пластинчатого теплообменника. Результаты. Приведены результаты компьютерного моделирования движения теплоносителя в межпластинном гофрированном канале оригинального пластинчатого теплообменного аппарата с помощью программного комплекса Аnsys . Определены критерии устойчивости системы. Выполнено 3 D -моделирование канала, образуемого гофрированными пластинами. При исследовании процесса турбулизации были рассмотрены несколько скоростных режимов движения теплоносителя. Определен коэффициент турбулизации Tu, %. Выводы. В результате компьютерного моделирования установлено увеличение коэффициента теплопередачи К, Вт/(м ℃ ) за счет повышенной турбулизации потока, что приводит к снижению металлоемкости и уменьшению стоимости теплообменного оборудования. Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1-1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined. Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Author(s):  
Shitao Shen ◽  
Zichuan Yi ◽  
Xing Li ◽  
Shuting Xie ◽  
Mingliang Jin ◽  
...  

Author(s):  
Andrei A. Akhremenkov ◽  
Anatoliy M. Tsirlin ◽  
Vladimir Kazakov

In this paper we consider heat exchange system from point of view of Finite-time thermodynamics. At first time the novel estimate of the minimal entropy production in a general-type heat exchange system with given heat load and fixed heat exchange surface is derived. The corresponding optimal distribution of heat exchange surface and optimal contact temperatures are also obtained. It is proven that if a heat flow is proportional to the difference of contacting flows’ temperatures then dissipation in a multi-flow heat exchanger is minimal only if the ratio of contact temperatures of any two flows at any point inside heat exchanger is the same and the temperatures of all heating flows leaving exchanger are also the same. Our result based on those assumptions: 1. heat transfer law is linear (17); 2. summary exchange surface is given; 3. heat load is given; 4. input tempretures for all flows are given; 5. water equivalents for all flows are given.


Author(s):  
Christian L. Vandervort ◽  
Mohammed R. Bary ◽  
Larry E. Stoddard ◽  
Steven T. Higgins

The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. The key near-term market for the EFCC is likely to be repowering of existing coal fueled power generation units. Repowering with an EFCC system offers utilities the ability to improve efficiency of existing plants by 25 to 60 percent, while doubling generating capacity. Repowering can be accomplished at a capital cost half that of a new facility of similar capacity. Furthermore, the EFCC concept does not require complex chemical processes, and is therefore very compatible with existing utility operating experience. In the EFCC, the heat input to the gas turbine is supplied indirectly through a ceramic heat exchanger. The heat exchanger, coupled with an atmospheric coal combustor and auxiliary components, replaces the conventional gas turbine combustor. Addition of a steam bottoming plant and exhaust cleanup system completes the combined cycle. A conceptual design has been developed for EFCC repowering of an existing reference plant which operates with a 48 MW steam turbine at a net plant efficiency of 25 percent. The repowered plant design uses a General Electric LM6000 gas turbine package in the EFCC power island. Topping the existing steam plant with the coal fueled EFCC improves efficiency to nearly 40 percent. The capital cost of this upgrade is 1,090/kW. When combined with the high efficiency, the low cost of coal, and low operation and maintenance costs, the resulting cost of electricity is competitive for base load generation.


Sign in / Sign up

Export Citation Format

Share Document