Low-Speed Preconditioning for AUSM+-Up Scheme

2015 ◽  
Vol 723 ◽  
pp. 224-228
Author(s):  
Wei Peng ◽  
Guo Ping Chen ◽  
Lang Li

Based on Navier-stokes equations, Weiss-Smith matrix preconditioning method is implemented within pseudo time derivative term. AUSM+-up family schemes and LU-SGS implicit iterative method were used to solve low speed flows and were compared with literature data and theoretical value. Through comparing calculation with the literature data and theoretical value, The results showed the preconditioning algorithm can be applied efficiently to the low speeds flow field, All these works built foundations for further application of chemical flows.

2014 ◽  
Vol 1070-1072 ◽  
pp. 1972-1977
Author(s):  
Lang Li ◽  
Guo Ping Cheng ◽  
Guo Quan Zhu ◽  
Wei Zhang

Based on Navier-stokes equations, Weiss-Smith matrix preconditioning method is implemented within pseudo time derivative term. AUSM+-up family schemes and LU-SGS implicit iterative method were used to solve low speed flows and were compared with literature data and theoretical value. Through comparing calculation with the literature data and theoretical value, The Results showed the preconditioning algorithm can be applied efficiently to the low speeds flow field ,All these works built foundations for further application of chemical flows.


Author(s):  
Chunhua Sheng ◽  
Xiao Wang

A preconditioning scheme is applied to a compressible turbomachinery flow solver MSU-TURBO for simulating viscous flows at low Mach number and incompressible region. The Navier-Stokes equations are cast in a non-inertial rotating frame. A constant diagonal preconditioning matrix is applied to the conservative form of the governing equations, which contains a single parameter depending on the reference Mach number and rotational speed of the relative frame. The effect of the rotational speed on preconditioned scheme is numerically investigated for two low speed viscous flows in rotating machinery, a NASA low speed centrifugal compressor (LSCC) and a marine propeller (P5168). Computations are compared against the original MSU-TURBO solutions, and suggestions are provided for computing the low Mach number flows in rotating turbomachinery using the preconditioned TURBO solver.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


2016 ◽  
Vol 792 ◽  
pp. 5-35 ◽  
Author(s):  
Giuseppe A. Zampogna ◽  
Alessandro Bottaro

The interaction between a fluid flow and a transversely isotropic porous medium is described. A homogenized model is used to treat the flow field in the porous region, and different interface conditions, needed to match solutions at the boundary between the pure fluid and the porous regions, are evaluated. Two problems in different flow regimes (laminar and turbulent) are considered to validate the system, which includes inertia in the leading-order equations for the permeability tensor through a Oseen approximation. The components of the permeability, which characterize microscopically the porous medium and determine the flow field at the macroscopic scale, are reasonably well estimated by the theory, both in the laminar and the turbulent case. This is demonstrated by comparing the model’s results to both experimental measurements and direct numerical simulations of the Navier–Stokes equations which resolve the flow also through the pores of the medium.


Author(s):  
Bakhtier Farouk ◽  
Murat K. Aktas

Formation of vortical flow structures in a rectangular enclosure due to acoustic streaming is investigated numerically. The oscillatory flow field in the enclosure is created by the vibration of a vertical side wall of the enclosure. The frequency of the wall vibration is chosen such that a standing wave forms in the enclosure. The interaction of this standing wave with the horizontal solid walls leads to the production of Rayleigh type acoustic streaming flow patterns in the enclosure. All four walls of the enclosure considered are thermally insulated. The fully compressible form of the Navier-Stokes equations is considered and an explicit time-marching algorithm is used to explicitly track the acoustic waves. Numerical solutions are obtained by employing a highly accurate flux corrected transport (FCT) algorithm for the convection terms. A time-splitting technique is used to couple the viscous and diffusion terms of the full Navier-Stokes equations. Non-uniform grid structure is employed in the computations. The simulation of the primary oscillatory flow and the secondary (steady) streaming flows in the enclosure is performed. Streaming flow patterns are obtained by time averaging the primary oscillatory flow velocity distributions. The effect of the amount of wall displacement on the formation of the oscillatory flow field and the streaming structures are studied. Computations indicate that the nonlinearity of the acoustic field increases with increasing amount of the vibration amplitude. The form and the strength of the secondary flow associated with the oscillatory flow field and viscous effects are found to be strongly correlated to the maximum displacement of the vibrating wall. Total number of acoustic streaming cells per wavelength is also determined by the strength and the level of the nonlinearity of the sound field in the resonator.


Author(s):  
Axel Hackbarth ◽  
Edwin Kreuzer ◽  
Thorben Schröder

In marine environments, sparse in-situ measurements can be used for the estimation of the fluid dynamic field. To make best use of a mobile sensor network in an environment whose dynamics can be described by the Navier-Stokes equations, we developed a framework for data assimilation with motion-constrained underwater vehicles, that takes the physical field properties into account while sampling. Our algorithm uses an ensemble Kalman filter that propagates hundreds of slightly varied coarse fluid dynamic simulations through time. Flow and scalar measurements from the mobile sensors are integrated into all ensemble members. We implemented a model predictive controller to calculate covariance minimizing paths from the estimated flow field and motion primitives of the vehicles, which are affected by a strong current. Thereby, we were able to indirectly track dynamically changing wall temperatures through measurements of flow field variables.


2007 ◽  
Vol 04 (04) ◽  
pp. 567-601
Author(s):  
JOSE A. LAMAS

An iterative method has been developed for the solution of the Navier–Stokes equations and implemented using finite volumes with co-located variable arrangement. A pressure equation is obtained combining algebraic momentum and mass conservation equations resulting in a self-consistent set of equations. An iterative procedure solves the pressure equation consistently with mass conservation and then updates velocities based on momentum equations without introducing velocity or pressure correction equations. The process is repeated until velocities satisfy both mass and momentum conservation. Tests demonstrate a priori pressure field solution consistent with mass conservation, and solution of hydrostatic problems in one iteration.


Sign in / Sign up

Export Citation Format

Share Document