Research on Electric-Fluid Mechanics with Intermittent Oscillatory of RCC Circuit

2015 ◽  
Vol 730 ◽  
pp. 297-302
Author(s):  
Wei Zhou Hou

RCC circuit (self-oscillating flyback converter) is a kind of high efficient working circuit by use of several devices, but excessive control current will cause the occur of intermittent oscillation. And then the oscillation frequency of the circuit change in a large scope (from hundreds of hertz to several thousand hertz). In addition, the output power is more likely to make the transformer device to produce abnormal noise. However, this phenomenon is not completely useless. After improving the RCC circuit can be conclude that the circuit can start in applying a pulse signal if the output power is small. The switch circuit operates in low-power state by means of intermittent oscillation. The result is that RCC circuit have high performance price ratio and low cost, so it is a widely used in high performance power supply equipment.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhangli Liu ◽  
Jiaxing Xu ◽  
Min Xu ◽  
Caifeng Huang ◽  
Ruzhu Wang ◽  
...  

AbstractThermally driven water-based sorption refrigeration is considered a promising strategy to realize near-zero-carbon cooling applications by addressing the urgent global climate challenge caused by conventional chlorofluorocarbon (CFC) refrigerants. However, developing cost-effective and high-performance water-sorption porous materials driven by low-temperature thermal energy is still a significant challenge. Here, we propose a zeolite-like aluminophosphate with SFO topology (EMM-8) for water-sorption-driven refrigeration. The EMM-8 is characterized by 12-membered ring channels with large accessible pore volume and exhibits high water uptake of 0.28 g·g−1 at P/P0 = 0.2, low-temperature regeneration of 65 °C, fast adsorption kinetics, remarkable hydrothermal stability, and scalable fabrication. Importantly, the water-sorption-based chiller with EMM-8 shows the potential of achieving a record coefficient of performance (COP) of 0.85 at an ultralow-driven temperature of 63 °C. The working performance makes EMM-8 a practical alternative to realize high-efficient ultra-low-temperature-driven refrigeration.


Author(s):  
Juan Wang ◽  
Zhihua Zhang ◽  
Siyun Qi ◽  
Yingcai Fan ◽  
Yanmei Yang ◽  
...  

The development of high efficient, low cost and environment-friendly solutions for the conversion of gas nitrogen to ammonia under ambient conditions has great industrial and academic significance. Single-atom catalysis (SAC)...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2106
Author(s):  
Xin Yu Wang ◽  
Ze Wei Lin ◽  
Yan Qing Jiao ◽  
Jian Cong Liu ◽  
Rui Hong Wang

Searching for high-efficient, good long-term stability, and low-cost electrocatalysts toward oxygen reduction reaction (ORR) is highly desirable for the development of sustainable energy conversion devices. Iron–nitrogen doped carbon (Fe–N/C) catalysts have been recognized as the most promising candidates for traditional Pt-based catalysts that benefit from their high activity, excellent anti-poisoning ability, and inexpensiveness. Here, a super-dispersed and high-performance Fe–N/C catalyst was derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. It produced a series of catalysts, whose sizes could be tuned in the range from 62 to over 473 nm in diameter. After rationally regulating the component and heating treatment, the best ORR activity was measured for the catalyst with a size of 105 nm, which was obtained when the Fe3+/Zn2+ molar ratio was 0.05 and carbonization temperature was 900 °C. It exhibited a high onset potential (Eonset = 0.99 V) and half-wave potential (E1/2 = 0.885 V) compared with a commercial 20% Pt/C catalyst (Eonset = 0.10 V, E1/2 = 0.861 V) as well as much better durability and methanol resistance in an alkaline electrolyte.


2021 ◽  
Author(s):  
Zhang Li liu ◽  
Jiaxing Xu ◽  
Xu Min ◽  
Caifeng Huang ◽  
Ruzhu Wang ◽  
...  

Abstract Thermally driven water-based sorption refrigeration is considered a promising strategy to realize near-zero-carbon cooling applications by addressing the urgent global climate challenge caused by conventional chlorofluorocarbon (CFC) refrigerants. However, developing cost-effective and high-performance water-sorption porous materials driven by low-temperature thermal energy is still a significant challenge. Here, we propose a low-cost zeolite-like aluminophosphate with SFO topology (EMM-8) for water-sorption-driven refrigeration. The EMM-8 is characterized by 12-membered ring channels with large accessible pore volume and exhibits high water uptake of 0.36 g·g-1, low-temperature regeneration of 65 °C, fast adsorption kinetics, remarkable hydrothermal stability, and scalable fabrication. Importantly, the water-sorption-based chiller with EMM-8 shows the potential of achieving a record coefficient of performance (COP) of 0.85 at an ultralow-driven temperature of 63 °C. The extraordinary working performance makes EMM-8 a practical alternative to realize high-efficient ultra-low-temperature-driven refrigeration.


2021 ◽  
Author(s):  
Yingjie Su ◽  
Zhenjie Lu ◽  
Junxia Cheng ◽  
Xuefei Zhao ◽  
Xingxing Chen ◽  
...  

Development of high-efficient and low-cost heteroatom-doped porous carbon electrode is vitally important for high-performance supercapacitors. Herein, waste phenolic resin-based insulation boards, which naturally contain N and O elements, were deliberated...


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document