Analysis of Research Trends in Water Resource Management Using Network Analysis

2015 ◽  
Vol 752-753 ◽  
pp. 1430-1440 ◽  
Author(s):  
Dae Hyun Jeong ◽  
Young Duk Koo

This study was conducted to investigate the research trends in water resource management using authors' keywords of papers in this area. For this purpose, networks of keywords were constructed through the analysis of social networks and the degree centrality was used as a measure for analyzing the water resource management areas in which research is being conducted most actively. Based on this analysis, the research trends in water resource management during the 1990s, 2000s, and after 2010 were investigated. As a result, the most active research areas in water resource management were found to be integrated water resource management system, water policies, and the development of programs for optimizing water resources. As a result of the analysis by period, the central subjects of research that emerged as new trends were found to be the acquisition of water resources such as ground water development during the 1990s, water resource management during the 2000s, and water resource management measures and government policies to cope with climate change after 2010. The significance of the present study is that the research trends were examined around the correlations among keywords by using social network analysis, rather than analyzing research trends simply by using the frequencies of papers and citations in water resource-related papers.

Author(s):  
V Shinju ◽  
Aswathi Prasad

The natural resources are repository for the survival of all of us, so they must be used efficiently to meet the present needs while conserving them for future generations. An action to develop capacities from global to household levels for their sustainable management and regulation is required henceforth. Of these natural resources, water resources are most precious. If there is no water; there would be no life on earth. Since ‘water is the elixir of life’, water resource management has been considered as one of the most relevant areas of intervention. Understanding the gender dimensions of water resource management is a starting point for reversing the degradation of water resources. Women play an important role here since they have to access the water resources for almost all the activities on a daily basis. As the women are the strong social agents, effective and improved water preservation techniques could be achieved through their empowerment that may eventually lead to the well-being of the households in particular and of the community in general. Therefore, the major research question posed in this study is to analyze the role of women in the preservation and management of water, an inevitable, precious but diminishing natural resource. The study also intends to describe the relationship between the three ‘W's-Women, Water & Well-being. Both qualitative and quantitative approaches are essential here as it is a contingent issue in the present scenario. Psychological dimensions were also explored since the issue is affecting the routine life of the community. The case study of women belonging to the Kuttadampadam region was done to explain the role of women in preserving water resources in the areas affecting severe water scarcity.


Author(s):  
P. Pallavi ◽  
Shaik Salam

Water is an important, but often ignored element in sustainable development by now it has been clear that urgent action is needed to avoid global water crisis. Water resource management is the activity of planning, developing, distributing and managing the optimum use of water resources. Successful management of water resources requires accurate knowledge of their resource distribution to meet up the competing demands and mechanisms to make good decisions using advanced recent technologies.Towards evolving comprehensive management plan in suitable conservation and utilization of water resources space technology plays a crucial role in managing country’s available water resources. Systematic approaches involving judicious combination of conventional server side scripting programming and remote sensing techniques pave way for achieving optimum planning and operational of water resources projects.   new methodologies and 24/7 accessible system need to be built, these by reducing the dependency on complex infrastructure an specialist domain Open source web GIS systems have proven their rich in application of server side scripting and easy to use client application tools. Present study and implementation aims to provide wizard based or easily driven tools online for command area management practices. In this large endeavour modules for handling remote sensing data, online raster processing, statistics and indices generation will be developed.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2642 ◽  
Author(s):  
Thuc D. Phan ◽  
James C. R. Smart ◽  
Ben Stewart-Koster ◽  
Oz. Sahin ◽  
Wade L. Hadwen ◽  
...  

Bayesian networks (BNs) are widely implemented as graphical decision support tools which use probability inferences to generate “what if?” and “which is best?” analyses of potential management options for water resource management, under climate change and socio-economic stressors. This paper presents a systematic quantitative literature review of applications of BNs for decision support in water resource management. The review quantifies to what extent different types of data (quantitative and/or qualitative) are used, to what extent optimization-based and/or scenario-based approaches are adopted for decision support, and to what extent different categories of adaptation measures are evaluated. Most reviewed publications applied scenario-based approaches (68%) to evaluate the performance of management measures, whilst relatively few studies (18%) applied optimization-based approaches to optimize management measures. Institutional and social measures (62%) were mostly applied to the management of water-related concerns, followed by technological and engineered measures (47%), and ecosystem-based measures (37%). There was no significant difference in the use of quantitative and/or qualitative data across different decision support approaches (p = 0.54), or in the evaluation of different categories of management measures (p = 0.25). However, there was significant dependence (p = 0.076) between the types of management measure(s) evaluated, and the decision support approaches used for that evaluation. The potential and limitations of BN applications as decision support systems are discussed along with solutions and recommendations, thereby further facilitating the application of this promising decision support tool for future research priorities and challenges surrounding uncertain and complex water resource systems driven by multiple interactions amongst climatic and non-climatic changes.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2661
Author(s):  
Yongfen Zhang ◽  
Chongjun Tang ◽  
Aizhong Ye ◽  
Taihui Zheng ◽  
Xiaofei Nie ◽  
...  

Quantitatively figuring out the effects of climate and land-use change on water resources and their components is essential for water resource management. This study investigates the effects of climate and land-use change on blue and green water and their components in the upper Ganjiang River basin from the 1980s to the 2010s by comparing the simulated changes in blue and green water resources by using a Soil and Water Assessment Tool (SWAT) model forced by five climate and land-use scenarios. The results suggest that the blue water flow (BWF) decreased by 86.03 mm year−1, while green water flow (GWF) and green water storage (GWS) increased by 8.61 mm year−1 and 12.51 mm year−1, respectively. The spatial distribution of blue and green water was impacted by climate, wind direction, topography, and elevation. Climate change was the main factor affecting blue and green water resources in the basin; land-use change had strong effects only locally. Precipitation changes significantly amplified the BWF changes. The proportion of surface runoff in BWF was positively correlated with precipitation changes; lateral flow showed the opposite tendency. Higher temperatures resulted in increased GWF and decreased BWF, both of which were most sensitive to temperature increases up to 1 °C. All agricultural land and forestland conversion scenarios resulted in decreased BWF and increased GWF in the watershed. GWS was less affected by climate and land-use change than GWF and BWF, and the trends in GWS were not significant. The study provides a reference for blue and green water resource management in humid areas.


Water Policy ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 1334-1352 ◽  
Author(s):  
Jyoti S. Jennewein ◽  
Kelly W. Jones

Operationalizing integrated water resource management (IWRM) often involves decentralization of water management via community-based management (CBM). While attention has been given to the components leading to successful CBM, less is known about what factors motivate people's willingness to participate (WTP) in such programs. This study analyzed factors that influence household WTP in CBM in a transboundary watershed located where El Salvador, Guatemala, and Honduras converge – the Trifinio Region. Several variables were hypothesized to influence WTP: sense of community (SOC), dependence on water resources, level of concern for water resources, and socio-economic characteristics. In 2014, quantitative and qualitative data were collected from 62 households in five communities. Most respondents reported high levels of WTP in future CBM initiatives, and multivariate regression analysis revealed that SOC was the most important predictor of WTP, with wealth and perceptions of watershed management also statistically significant. Qualitative analyses revealed water availability was more concerning than water quality, and perceptions of inequitable access to water is an important constraint to developing CBM strategies. Taken together, these results suggest that enhancing SOC and relationships between local and regional levels of governance prior to establishing community-based projects would facilitate more success in implementing IWRM.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6268
Author(s):  
Aditya Dinesh Gupta ◽  
Prerna Pandey ◽  
Andrés Feijóo ◽  
Zaher Mundher Yaseen ◽  
Neeraj Dhanraj Bokde

According to the United Nation’s World Water Development Report, by 2050 more than 50% of the world’s population will be under high water scarcity. To avoid water stress, water resources are needed to be managed more securely. Smart water technology (SWT) has evolved for proper management and saving of water resources. Smart water system (SWS) uses sensor, information, and communication technology (ICT) to provide real-time monitoring of data such as pressure, water ow, water quality, moisture, etc. with the capability to detect any abnormalities such as non-revenue water (NRW) losses, water contamination in the water distribution system (WDS). It makes water and energy utilization more efficient in the water treatment plant and agriculture. In addition, the standardization of data format i.e., use of Water Mark UP language 2.0 has made data exchange easier for between different water authorities. This review research exhibits the current state-of-the-art of the on-going SWT along with present challenges and future scope on the mentioned technologies. A conclusion is drawn that smart technologies can lead to better water resource management, which can lead to the reduction of water scarcity worldwide. High implementation cost may act as a barrier to the implementation of SWT in developing countries, whereas data security and its reliability along with system ability to give accurate results are some of the key challenges in its field implementation.


2020 ◽  
Author(s):  
Iolanda Borzì ◽  
Murugesu Sivapalan ◽  
Brunella Bonaccorso ◽  
Alberto Viglione

<p>In many regions of the world, water supply is threatened by natural hazards such as floods and droughts, as well as by shocks induced by anthropogenic changes to water use. Lack of anticipation and/or preparation for these events can lead to delayed or insufficient responses to sudden or developing water crises, that sometimes can produce irrecoverable damage to the environment. In this work, a socio-hydrological approach to sustainable water resources management of the Alcantara River Basin in Sicily (Italy) is adopted that explicitly takes into account feedbacks between the natural and the human components that might arise from shocks to the water management system, including possible evolution of policy responses. The Alcantara River Basin is a groundwater-fed catchment which supplies many villages on the Ionian coast up to Messina city, mainly through the Alcantara aqueduct, but also agricultural areas and industries, including hydropower plants. It also hosts the Alcantara Fluvial Park, an important natural reserve. The Alcantara aqueduct also supplied the city of Messina during a temporary failure of its main aqueduct caused by a landslide in October 2015. The main purpose of the work is to use the socio-hydrological model as a “screening tool” to frame water resource management issues in a broad way and provide guidance to the community to identify aspects of societal behavior that need to evolve towards sustainable water resource management in order to withstand future shocks. This has been done by scenario simulations in conditions of a natural shock affecting the system (i.e. drought) and of a human-induced one (i.e. increase in groundwater extraction). Sensitivity analysis of the model social parameters revealed how the value attributed by the society to the environment and water resources use, its capacity to remember previous water crises and, in particular, its previous responses to shocks, can affect the system in a way that can produce paradoxical effects. Results show how a rapid decision-making strategy that may work in the short term, can be counter-productive when viewed over the long term and how a do-nothing decision during a water crisis could be highly damaging to the environment. For the above-mentioned reasons, this socio-hydrological approach can be considered as a useful tool to understand human-water dynamics and to support decision-makers in water resource management policies with a broad and long-term perspective.</p>


2014 ◽  
Vol 599-601 ◽  
pp. 1301-1304
Author(s):  
Wen Ming Zhang ◽  
Zheng Shen ◽  
Wen Jun Pan ◽  
Rong Hui Ye

This paper presents a prototype of GIS (Geographic Information System) and web-based decision support system (GWDSS) for regional water resource management and planning, which is a conjunctive application of GIS, Web and DSS technologies. The components involved and implementation of GWDSS are analyzed. The scenario analysis approach and embedded GIS functions are explained. Through the application of GWDSS in the case study region, GWDSS enables managers and decision makers to improve the regional strategic management and planning of water resources,and optimizes the use of water to satisfy the demands of competing stakeholders and protecting water resources.


Author(s):  
A. C. Sun ◽  
V. C. Tidwell ◽  
R. Thomas ◽  
J. R. Brainard ◽  
P. H. Kobos ◽  
...  

Water resource management for most Southwestern states requires collaborative solutions that cross regional, state, and federal judicial boundaries. As most of the region experiences drought-like conditions as well as population growth, there is a growing concern about sustainability of the water resource to meet industrial, agricultural, and residential demands. Technically, seeking a consensus path requires modeling of the hydrologic cycle within a prescribed region. Credible models must capture key interdependencies of various water resources, use historical data for calibration, and provide temporal/spatial resolutions that are aligned with the interests of the decision makers.


2014 ◽  
Vol 580-583 ◽  
pp. 1856-1859
Author(s):  
Ying Fei Liu ◽  
Ben Qing Ruan ◽  
Cong Cong Xie

Water is crucial to production, and is the foundation of ecology. Building a reasonable management system for water resources is necessary and important, and it’s an inevitable requirement of our strategy of sustainable development. In the management of behavior, philosophical base determines the behavior trends. With the development of socio-economic development, the strategy of water resources management has changed a lot in China. In this paper, the problems caused by improper water resources management modes and by overly governing by people are discussed and a series of water management reform proposals are developed on the bases of the ancient Chinese management philosophy. The paper then gets the conclusion that the water resource management reform is actually following the management path from “governing by people” to “governing by nature”.


Sign in / Sign up

Export Citation Format

Share Document