scholarly journals Influence of Ag on Chemical and Thermal Compatibility of LSCF-SDCC for LT-SOFC

2015 ◽  
Vol 773-774 ◽  
pp. 445-449 ◽  
Author(s):  
Linda Agun ◽  
Muhamad Subri Abu Bakar ◽  
Sufizar Ahmad ◽  
Andanastuti Muchtar ◽  
Hamimah Abd Rahman

In addition to the good electrochemical performance criteria in solid oxide fuel cell (SOFC) applications, cathode material must match thermal expansion with other SOFC components. Thus, effects of Ag on thermal mismatch, chemical reactions, and microstructure are investigated. Ag (1 wt% to 5 wt. %) was mixed with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) and Sm-doped ceria carbonate (SDCC) composite cathode powder. LSCF6428-SDCC-Ag samples were sintered at 600 °C for 2 h. The thermal expansion coefficients (TECs), which were determined using a dilatometer, indicated relatively less TEC mismatch between LSCF-SDCC-Ag cathodes composite and SDCC electrolyte. The average TEC value obtained from 20 °C to 600 °C implied that LSCF-SDCC-A5 (5 wt. % Ag) showed better thermal matching (13.18×10−6 K−1) with SDCC electrolyte (12.84×10−6 K−1) and achieved better compatibility. The X-ray diffraction patterns indicated that the LSCF6428-SDCC-Ag peak increased with the increase in the amount of Ag. Scanning electron microscopy analysis showed that Ag was capable of maintaining the porosity that is required for cathodes (20%–40%). Results showed that Ag exhibited desirable thermal and chemical compatibility with LSCF-SDCC. Thus, LSCF6428-SDCC-Ag can be used as a composite cathode for low-temperature SOFCs.

1990 ◽  
Vol 68 (8) ◽  
pp. 1352-1356 ◽  
Author(s):  
Walter Abriel ◽  
André Du Bois ◽  
Marek Zakrzewski ◽  
Mary Anne White

The crystal structure of the title compound has been determined by single crystal X-ray diffraction data collected at 293 K, and refined to a final Rw of 0.057. The crystals are rhombohedral, space group [Formula: see text], with a = 27.134(8) Å, c = 10.933(2) Å, and Z = 18. The mole ratio of Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) to CCl4 is 6:1. The guest molecules are disordered. X-ray powder diffraction was carried out in the temperature range from 10 to 300 K. From this, the thermal expansion coefficients for the a- and c-axes and the volume have been determined. Keywords: thermal expansion, crystal structure, clathrate.


2008 ◽  
Vol 368-372 ◽  
pp. 1665-1667
Author(s):  
M.M. Wu ◽  
X.L. Xiao ◽  
Y.Z. Cheng ◽  
J. Peng ◽  
D.F. Chen ◽  
...  

A new series of solid solutions Dy2-xGdxMo4O15 (x = 0.0-0.9) were prepared. These compounds all crystallize in monoclinic structure with space group P21/c. The lattice parameters a, b, c and unit cell volumes V increase almost linearly with increasing gadolinium content. The intrinsic thermal expansion coefficients of Dy2-xGdxMo4O15 (x = 0.0 and 0.25) were obtained in the temperature range of 25 to 500°C with high-temperature X-ray diffraction. The correlation between thermal expansion and crystal structure was discussed.


2005 ◽  
Vol 38 (6) ◽  
pp. 1038-1039 ◽  
Author(s):  
Robert Hammond ◽  
Klimentina Pencheva ◽  
Kevin J. Roberts ◽  
Patricia Mougin ◽  
Derek Wilkinson

Variable-temperature high-resolution capillary-mode powder X-ray diffraction is used to assess changes in unit-cell dimensions as a function of temperature over the range 188–328 K. No evidence was found for any polymorphic transformations over this temperature range and thermal expansion coefficients for urea were found to be αa= (5.27 ± 0.26) × 10−5 K−1and αc= (1.14 ± 0.057) × 10−5 K−1.


2011 ◽  
Vol 308-310 ◽  
pp. 311-314
Author(s):  
Jin Wen ◽  
Shu Zhen Sun

The high average thermal expansion required for thermal compatibility of dental porcelain with their substrate alloy is supplied by the mineral leucite (KAlSi2O6). In the research, the high thermal expansion coefficients phase leucite was prepared by coprecipitation technique. Three materials with formulae of K2O∶Al2O3∶SiO2= 1∶1∶x ( x=1.4, 2.0, 4.0 ) were investigated for differences in phase, thermal expansion. Unstoichiometric composition where K2O and Al2O3were added properly is advantage to leucite obtained. Coprecipitation processing produced fine leucite powder that would sinter at 1300°C, this temperature is about 200°C lower than of melting method. The average thermal expansion coefficients of leucite is 22.7×10-6/°Cfrom room temperature to 620°C,which is higher than the common porcelain. Changing in the leucite content of dental porcelain would results from thermal expansion coefficients of porcelain variation, which could be responsible for changes in porcelain-metal thermal compatibility.


1995 ◽  
Vol 73 (4) ◽  
pp. 513-521 ◽  
Author(s):  
Darek Michalski ◽  
Mary Anne White ◽  
Pradip K. Bakshi ◽  
T. Stanley Cameron ◽  
Ian Swainson

The crystal structures of hexakis(phenylthio)benzene (HPTB) and its CBr4 clathrate have been determined by single crystal X-ray diffraction data collected at T = 18 °C and refined to final Rw of 0.036 and 0.047, respectively. Pure HPTB is triclinic, space group [Formula: see text] (No. 2), with a = 9.589(2) Å, b = 10.256(1) Å, c = 10.645(2) Å, α = 68.42(1)°, β = 76.92(2)°, γ = 65.52(1)°, and Z = 1. The CBr4 clathrate of HPTB is rhombohedral, space group [Formula: see text] (No. 148), with a = 14.327(4) Å, b = 20.666(8) Å, and Z = 3. The host–guest mole ratio of HPTB–CBr4 is 1:2. Neutron powder diffraction was carried out on powders of both compounds in the temperature range 25 K < T < 295 K. Thermal expansion coefficients were determined for HPTB and HPTB–CBr4 over this temperature range. Keywords: thermal expansion, crystal structure, clathrate.


2011 ◽  
Vol 399-401 ◽  
pp. 80-84
Author(s):  
Yi Yuan Tang ◽  
Jie Li Meng ◽  
Kai Lian Huang ◽  
Jian Lie Liang

Phase transformation of the Zr-1.0Sn-0.39Nb-0.31Fe-0.05Cr alloy was investigated by high temperature X-ray diffraction (XRD). The XRD results revealed that the alloy contained two precipitates at room temperature, namely β-Nb and hexagonal Zr(Nb,Fe,Cr,)2. β-Nb was suggested to dissolve into the α-Zr matrix at the 580oC. Thin oxide film formed at the alloy’s surface was identified as mixture of the monoclinic Zr0.93O2and tetragonal ZrO2, when the temperature reached to 750oC and 850 oC. The thermal expansion coefficients of αZr in this alloy was of αa = 8.39×10-6/°C, αc = 2.48×10-6/°C.


1997 ◽  
Vol 12 (12) ◽  
pp. 3230-3240 ◽  
Author(s):  
C. R. Kachelmyer ◽  
I. O. Khomenko ◽  
A. S. Rogachev ◽  
A. Varma

Time-resolved x-ray diffraction (TRXRD) was performed during Ti5Si3 synthesis by the self-propagating high-temperature synthesis mode for different Ti size fractions. It was determined that the time for product formation (ca. 15 s) was independent of Ti particle size. However, the formation of Ti5Si4 phase occurred when relatively large titanium particles were used. A simultaneous measurement of the temperature and TRXRD allowed us to attribute the shifting of XRD peaks at high temperature to thermal expansion of the Ti5Si3 product. The thermal expansion coefficients differ for different crystal planes, and their numerical values compare well with those reported previously in the literature.


1987 ◽  
Vol 31 ◽  
pp. 255-260
Author(s):  
M. Bagby ◽  
SJ Marshall ◽  
GW Marshall

Residual stresses in dental castings are widely held to be the cause of distortion and change of fit in ceramic bonded to metal dental restorations. Residual stresses are thought to result from the casting process and from ceramic/metal mismatch of thermal expansion coefficients. Such stresses have not been confirmed experimentally. The purpose of this study was to measure residual stress with x-ray diffraction at the various porcelain application steps for two noble dental alloys with two dental opaque porcelains.


Author(s):  
Yaroslav P. Biryukov ◽  
Almaz L. Zinnatullin ◽  
Rimma S. Bubnova ◽  
Farit G. Vagizov ◽  
Andrey P. Shablinskii ◽  
...  

The investigation of elemental composition, crystal structure and thermal behavior of vonsenite and hulsite from the Titovskoe boron deposit in Russia is reported. The structures of the borates are described in terms of cation-centered and oxocentred polyhedra. There are different sequences of double chains and layers consisting of oxocentred [OM 4] n + tetrahedra and [OM 5] n + tetragonal pyramids forming a framework. Elemental composition was determined by energy-dispersive X-ray spectroscopy (EDX). Oxidation states and coordination sites of iron and tin in the oxoborates are determined using Mössbauer spectroscopy and compared with EDX and X-ray diffraction data (XRD). According to results obtained from high-temperature Mössbauer spectroscopy, the Fe2+ to Fe3+ oxidation in vonsenite and hulsite occurs at approximately 500 and 600 K, respectively. According to the high-temperature XRD data, this process is accompanied by an assumed deformation of crystal structures and subsequent solid-phase decomposition to hematite and warwickite. It is seen as a monotonic decrease of volume thermal expansion coefficients with an increase in temperature. A partial magnetic ordering in hulsite is observed for the first time with T c ≃ 383 K. Near this temperature, an unusual change of thermal expansion coefficients is revealed. Vonsenite starts to melt at 1571 K and hulsite melts at 1504 K. Eigenvalues of thermal expansion tensor are calculated for the oxoborates as well as anisotropy of the expansion is described in comparison with their crystal structures.


2014 ◽  
Vol 787 ◽  
pp. 221-226
Author(s):  
Lei Lei Zhang ◽  
Jin Hua Huang ◽  
Zhao Yuan Song ◽  
Yi Dan Fu ◽  
Mo Liu ◽  
...  

Ba0.2Sr0.8Co0.9Nb0.1O3-δ(BSCN0.2)-xGd0.1Ce0.9O1.95(GDC) (x = 10, 20, 30 and 40 wt.%) composite cathodes were investigated for the potential application in the IT-SOFCs. The results of chemical compatibility measurement show that a small number of Gd and/or Ce ions may melt into the lattice of BSCN0.2 to form BSCN0.2-GDC solid solution. Thermal expansion coefficients effectively reduced by the incorporation of GDC. The electrochemical performance of BSCN0.2-xGDC composite cathodes increased with increasing x from 10 to 30 wt.%. When x = 30 wt.%, the area specific resistances were only 0.040 and 0.017 Ω cm2at 750 and 800oC, respectively. This improved electrochemical performance is attributed to the good thermal expansion match between BSCN0.2-xGDC composite cathode and GDC electrolyte, and the increased oxygen vacancy concentration. With further increasing x, the electrochemical performance of the composite cathode decreased. This result may be due to the ambipolar resistance model of porous composite cathode and the poor electrical conductivity of BSCN-40GDC. The maximum power densities of a BSCN0.2-30GDC/La0.9Sr0.1Ga0.8Mg0.2O3-δ/NiO-Sm0.2Ce0.8O1.9single-cell achieve 537 and 722 mW cm-2at 750oC and 800oC, respectively. These results indicate that the BSCN0.2-30GDC composite cathode is a promising candidate for IT-SOFC.


Sign in / Sign up

Export Citation Format

Share Document