Heterogeneous Lattice Model Based Simulation of Concrete under Uniaxial Loading

2015 ◽  
Vol 784 ◽  
pp. 249-257
Author(s):  
Xiao Huan Yan ◽  
Xiao Dan Ren ◽  
Jie Li

The heterogeneous lattice model is presented to simulate the behaviors of concrete, in which the concrete is regarded as random medium and the stochastic damage constitutive model is proposed. The parameters of the stochastic damage constitutive is identified compared with the experiment results of concrete under uniaxial tension and uniaxial compression.

2009 ◽  
Vol 417-418 ◽  
pp. 921-924
Author(s):  
Ming Xie ◽  
Shan Suo Zheng ◽  
Bin Wang ◽  
Lei Li ◽  
Wei Wang

A stochastic damage constitutive model is proposed based on Kelvin spring-damper model and Li Jie spring stochastic damage model. The model is made up by microscopic spring-slipper element. The slipper, parallel connected with spring, is introduced to consider the plasticity effect of concrete. Damage failure process of concrete subjected uniaxial tension is divided into spring broken state and slipper broken state to describe the elastic stage and plastic stage of damage respectively. In the light of energy conservation during the process of damage failure, stochastic damage constitutive equation of concrete material subjected to uniaxial tension stress is derived. Comparisons between test results and theoretical calculation results verify that the established constitutive damage equations are accord with the experimental situation, and the experimental data are observed undulated with theoretical curve in the range of variance. The research results can apply in the actual engineering.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3264
Author(s):  
Min Wang ◽  
Qifeng Guo ◽  
Yakun Tian ◽  
Bing Dai

Many underground reservoirs for storing water have been constructed in China’s western coal mines to protect water resources. Coal pillars which work as dams are subjected to a long-term soaking environment of concentrated salty water. Deterioration of the coal dam under the attack of the salty solution poses challenges for the long-term stability and serviceability of underground reservoirs. The evolution of the physical and mechanical properties of coal subjected to salty solutions are investigated in this paper. Coal from a western China mine is made to standard cylinder samples. The salty solution is prepared according to chemical tests of water in the mine. The coal samples soaked in the salty solution for different periods are tested by scanning electron microscope, nuclear magnetic resonance, and ultrasonic detector techniques. Further, uniaxial compression tests are carried out on the coal specimens. The evolutions of porosity, mass, microstructures of coal, solution pH values, and stress–strain curves are obtained for different soaking times. Moreover, a damage constitutive model for the coal samples is developed by introducing a chemical-stress coupling damage variable. The result shows that the corrosion effect of salty solution on coal samples becomes stronger with increasing immersion time. The degree of deterioration of the longitudinal wave velocity (vp) is positively correlated with the immersion time. With the increase in soaking times, the porosity of coal gradually increases. The relative mass firstly displays an increasing trend and then decreases with time. The peak strength and elastic modulus of coal decreases exponentially with soaking times. The developed damage constitutive model can well describe the stress–strain behavior of coal subjected to salty solution under the uniaxial compression.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1309 ◽  
Author(s):  
Yunliang Tan ◽  
Qingheng Gu ◽  
Jianguo Ning ◽  
Xuesheng Liu ◽  
Zhichuang Jia ◽  
...  

The mechanical properties of mortar materials in construction are influenced both by their own proportions and external loads. The trend of the stress–strain curve in cracks compaction stage has great influence on the relationship between the strength and deformation of cement mortar. Uniaxial compression tests of mortar specimens with different cement–sand ratios and loading rates were carried out, and the stored and dissipated energies were calculated. Results indicated that the elastic modulus and strength of mortar specimens increase with the cement–sand ratio and loading rate. The energy dissipation shows good consistency with the damage evolution. When the loading rate is less than 1.0 mm/min, most of the constitutive energy at the peak point is stored in the specimen and it increase with cement–sand ratio. A simple representation method of axial stress in cracks compaction stage was proposed and an energy-based damage constitutive model—which can describe well the whole process of cement mortar under uniaxial compression—was developed and verified.


Author(s):  
Shengtao Zhou ◽  
Nan Jiang ◽  
Xuedong Luo ◽  
Wen Fang ◽  
Xu He

Mechanical properties of the rock in the cold regions are often affected by freeze-thaw cycles and loads. It is of great theoretical significance and engineering value to establish a uniaxial compression damage constitutive model of the rock under freeze-thaw cycles that can reflect the relationship between macroscopic and mesoscopic structural damage. In this paper, macroscopic and mesoscopic methods are combined with statistical methods to quantitatively analyze the damage degree of rock under freeze-thaw cycles and loads. Combined with the fractal features of the macroscopic image of the section, a fractal damage constitutive model considering the residual strength of rock is established. In addition, the model is subsequently verified by the experiment. The experiment shows that the mechanical properties of rocks subjected to freeze-thaw cycles and loads are determined by freeze-thaw damage variables, load damage variables, and their coupling effects. As the number of freeze-thaw cycles increases, the uniaxial compressive strength and elastic modulus of rocks decrease, and peak strain increases. By using the fractal dimension of the compression fracture surface as a bridge considering the residual strength of the rock, the constitutive model can better reflect the compaction stage, elastic deformation stage and plastic deformation stage of the uniaxial compression process of the freeze-thaw rocks.


Sign in / Sign up

Export Citation Format

Share Document