Uniaxial Compression Fractal Damage Constitutive Model of Rock Subjected to Freezing and Thawing

Author(s):  
Shengtao Zhou ◽  
Nan Jiang ◽  
Xuedong Luo ◽  
Wen Fang ◽  
Xu He

Mechanical properties of the rock in the cold regions are often affected by freeze-thaw cycles and loads. It is of great theoretical significance and engineering value to establish a uniaxial compression damage constitutive model of the rock under freeze-thaw cycles that can reflect the relationship between macroscopic and mesoscopic structural damage. In this paper, macroscopic and mesoscopic methods are combined with statistical methods to quantitatively analyze the damage degree of rock under freeze-thaw cycles and loads. Combined with the fractal features of the macroscopic image of the section, a fractal damage constitutive model considering the residual strength of rock is established. In addition, the model is subsequently verified by the experiment. The experiment shows that the mechanical properties of rocks subjected to freeze-thaw cycles and loads are determined by freeze-thaw damage variables, load damage variables, and their coupling effects. As the number of freeze-thaw cycles increases, the uniaxial compressive strength and elastic modulus of rocks decrease, and peak strain increases. By using the fractal dimension of the compression fracture surface as a bridge considering the residual strength of the rock, the constitutive model can better reflect the compaction stage, elastic deformation stage and plastic deformation stage of the uniaxial compression process of the freeze-thaw rocks.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hang Lin ◽  
Linyuan Liang ◽  
Yifan Chen ◽  
Rihong Cao

The constitutive model of rock is closely connected with the mechanical properties of rock. To achieve a more accurate quantitative analysis of the mechanical properties of rock after the action of freeze-thaw cycles, it is necessary to establish the constitutive models of rock subjected to freeze-thaw cycles from the view of rock damage. Based on the assumption of rock couple damage, this study established a statistical damage constitutive model of rock subjected to freeze-thaw cycles by combining the lognormal distribution, which is commonly used in engineering reliability analysis, and the strain strength theory. Then, the coordinates and derivative at the peak of the stress-strain curve of the rock after the action of freeze-thaw cycles were obtained through experiments to solve the statistical distribution parameters με and S of the model, whereafter, the theoretical curves by the established model were compared with the experimental curves to verify the validity of it, which shows a great agreement. Finally, the sensitivity analysis of the statistical distribution parameters was implemented. The results indicate that με reflects the strength of the rock, which shows a positive relation, and S stands for the brittleness of the rock, which shows a negative relation.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3264
Author(s):  
Min Wang ◽  
Qifeng Guo ◽  
Yakun Tian ◽  
Bing Dai

Many underground reservoirs for storing water have been constructed in China’s western coal mines to protect water resources. Coal pillars which work as dams are subjected to a long-term soaking environment of concentrated salty water. Deterioration of the coal dam under the attack of the salty solution poses challenges for the long-term stability and serviceability of underground reservoirs. The evolution of the physical and mechanical properties of coal subjected to salty solutions are investigated in this paper. Coal from a western China mine is made to standard cylinder samples. The salty solution is prepared according to chemical tests of water in the mine. The coal samples soaked in the salty solution for different periods are tested by scanning electron microscope, nuclear magnetic resonance, and ultrasonic detector techniques. Further, uniaxial compression tests are carried out on the coal specimens. The evolutions of porosity, mass, microstructures of coal, solution pH values, and stress–strain curves are obtained for different soaking times. Moreover, a damage constitutive model for the coal samples is developed by introducing a chemical-stress coupling damage variable. The result shows that the corrosion effect of salty solution on coal samples becomes stronger with increasing immersion time. The degree of deterioration of the longitudinal wave velocity (vp) is positively correlated with the immersion time. With the increase in soaking times, the porosity of coal gradually increases. The relative mass firstly displays an increasing trend and then decreases with time. The peak strength and elastic modulus of coal decreases exponentially with soaking times. The developed damage constitutive model can well describe the stress–strain behavior of coal subjected to salty solution under the uniaxial compression.


2021 ◽  
pp. 105678952110454
Author(s):  
Zhanping Song ◽  
Tong Wang ◽  
Junbao Wang ◽  
Kehui Xiao ◽  
TengTian Yang

To study the influence of osmotic pressure on the uniaxial compression mechanical properties of limestone, uniaxial compression tests were carried out on limestone specimens under different osmotic water pressure. The test results show that with the increase of osmotic pressure, the closure strain, yield strain and peak strain of limestone gradually increase, while the closure stress, yield stress, peak stress and elastic modulus gradually decrease. To describe the stress-strain response of limestone during uniaxial compression failure, the concepts of compaction factor and osmotic pressure influencing factor were proposed, and a constitutive model of rock compaction stage was established by integrating the relationship between the compaction factor and osmotic pressure influencing factor and the tangent modulus of compaction section. On this basis, combining the continuum damage mechanics theory, and assuming that the rock micro-unit strength obeys the compound power function distribution, a constitutive model reflecting the uniaxial compression mechanical properties of rock under osmotic pressure was established by the statistical method. The rationality of the model was verified using the results of the uniaxial compression test of limestone under different osmotic pressures. The results show that the test results under different osmotic pressures are in good agreement with the theoretical curves, and the model in this paper can reflect the stress-strain response of limestone before its failure under different osmotic pressures.


2021 ◽  
pp. 105678952098386
Author(s):  
Junbao Wang ◽  
Qiang Zhang ◽  
Zhanping Song ◽  
Yuwei Zhang ◽  
Xinrong Liu

To study the effect of loading rate on the mechanical properties of salt rock, uniaxial compression tests and acoustic emission tests at different loading rates were carried out on salt rock specimens. The test results show that with increases in loading rate, the peak stress of salt rock increases first and then essentially remains unchanged, and the elastic modulus increases gradually, while the strain at peak stress decreases gradually. Moreover, the Poisson’s ratio is independent of loading rate. The macroscopic failure modes of the salt rock specimens at different loading rates are all ‘X’-type conjugate shear failure. However, the loading rate is closely related to the degree of fracture, such that the smaller the loading rate is, the higher is the degree of fracture of salt rock. In order to describe the stress–strain behaviour in the process of salt rock failure, a damage variable expression represented by the deformation modulus was proposed, and a rock damage constitutive model was established according to the theory of continuum damage mechanics. The rationality of the damage constitutive model was verified by using the present uniaxial compression test results of salt rock and existing test data from the literature. The results show that the model can accurately describe the stress–strain response of rock in the failure process.


2019 ◽  
Vol 9 (17) ◽  
pp. 3537
Author(s):  
Yuexiang Lin ◽  
Limin Peng ◽  
Mingfeng Lei ◽  
Xiang Wang ◽  
Chengyong Cao

Block-in-matrix-rocks (bimrocks) are very complicated geological masses that cause many challenging problems during the design and construction of engineering projects, such as parameter determination and landsliding. Successful engineering design and construction depends on a suitable constitutive model and reliable design parameters for geological masses. In this paper, the vibration attenuation signal of welded bimrocks was obtained and studied using resonance test technology. Combined with a uniaxial compression test, a constitutive model was proposed to describe the mechanical behavior of welded bimrocks. On this basis, the relations between the dynamic elastic modulus and the physical parameters of bimrocks were established, which included macroscopic mechanical parameters and damage constitutive parameters. Consequently, a new technological process was proposed to provide quick identification of the mechanical properties of welded bimrocks. The results indicate that the dynamic elastic modulus is highly correlated with the rock block proportion (RBP) and uniaxial compression strength (UCS). It is an effective parameter to predict the strength of the bimrocks with high RBPs. Additionally, the proposed constitutive model, which is based on damage theory, can accurately simulate the strain softening behavior of the bimrocks. Combining the resonant frequency technology and the proposed constitutive model, the complete stress strain curve can be obtained in a rapid and accurate manner, which provides a further guarantee of the stability and safety of underground engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ruijun Wang ◽  
Yan Li ◽  
Yang Li ◽  
Fan Xu ◽  
Xiaotong Li ◽  
...  

This study aims at determining the effect of water pressure on the mechanical properties of concrete subjected to freeze-thaw (F-T) attack under the dynamic triaxial compression state. Two specimens were used: (1) a 100 mm × 100 mm × 400 mm prism for testing the loss of mass and relative dynamic modulus of elasticity (RDME) after F-T cycles and (2) cylinders with a diameter of 100 mm and a height of 200 mm for testing the dynamic mechanical properties of concrete. Strain rates ranged from 10−5·s−1 to 10−3·s−1, and F-T cycles ranged from 0 to 100. Three levels of water pressure (0, 5, and 10 MPa) were applied to concrete. Results showed that as the number of F-T cycles increased, the mass loss rate of the concrete specimen initially decreased and then increased, but the RDME decreased. Under 5 MPa of water pressure and at the same strain rate, the ultimate compressive strength decreased, whereas the peak strain increased with the increase in the number of F-T cycles. This result is contrary to the variation law of ultimate compressive strength and peak strain with the increase in strain rate under the same number of F-T times. With the increase in F-T cycles or water pressure, the strain sensitivity of the dynamic increase factor of ultimate compressive strength and peak strain decreased, respectively. After 100 F-T cycles, the dynamic compressive strength under all water pressure levels tended to increase as the strain rate increased, whereas the peak strain decreased gradually.


Sign in / Sign up

Export Citation Format

Share Document