Determining the Reaction Forces and Torques that Appeared in the Ankle Joint during Normal Walking

2015 ◽  
Vol 801 ◽  
pp. 257-261
Author(s):  
Lucian Rusu ◽  
Cosmina Vigaru ◽  
Dan Ioan Stoia

The human body is a very complex system which is studied by doctors but also by engineers. The human motion analysis is an important topic in the biomechanical field. It is essential to determine the forces and torques that appears in joints during daily activities for the development of implants and prosthesis. The goal of this paper is to establish time variation of force and torque in the human ankle joint during one walking step. For this experiment we used two equipments witch record the ground reaction force respectively the angular motion for the ankle joint. Based on these measurements and using the anthropometric patient parameters we developed an application (using in Matlab – Simulink software) that calculates the forces and torques that appear in the human ankle joint. The application simulates the motion taking into account the mass inertia moments. The results of simulation are the forces and torques that appear in ankle joint. The application can simulate any type of human motion, according to the input data from the excel file. These results can be used further for the optimization of ankle implants or prosthesis.

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5709
Author(s):  
Alexander Weidmann ◽  
Bertram Taetz ◽  
Matthias Andres ◽  
Felix Laufer ◽  
Gabriele Bleser

Kinetic models of human motion rely on boundary conditions which are defined by the interaction of the body with its environment. In the simplest case, this interaction is limited to the foot contact with the ground and is given by the so called ground reaction force (GRF). A major challenge in the reconstruction of GRF from kinematic data is the double support phase, referring to the state with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately, using only kinematic data. We propose the biomechanically inspired force shadow method (FSM) to obtain a unique solution for any contact phase, including double support, of an arbitrary motion. We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and obtain correlations of 0.39≤r≤0.94 for double support motions and 0.83≤r≤0.87 for a walking motion. The presented data is based on inertial human motion capture, showing the applicability for scenarios outside the laboratory. The proposed approach has low computational complexity and allows for online vGRF estimation.


2017 ◽  
Vol 112 ◽  
pp. 07019 ◽  
Author(s):  
Daniel Ganea ◽  
Elena Mereuta ◽  
Silvia Veresiu ◽  
Madalina Rus ◽  
Valentin Amortila

2019 ◽  
Vol 19 (07) ◽  
pp. 1940031
Author(s):  
HYEONG MIN JEON ◽  
EUI BUM CHOI ◽  
JAE HOON HEO ◽  
GWANG MOON EOM

The purpose of this study was to compare the ankle joint moments in different foot strike patterns during stair descent and to find a better strategy. Methods: Twenty young subjects participated in this study. Subjects performed two trials of descending stairs in rearfoot strike (RFS) and forefoot strike (FFS) strategies. Kinematic and kinetic data were measured by a motion capture system and force plates. Ankle joint moments, ground reaction forces, and moment arms in three planes of motion were calculated from the measured data. The root-mean-squared means of ankle joint moments, ground reaction forces, and moment arms were compared between different foot strike patterns for each phase of stair descent (weight acceptance, forward continuance, and controlled lowering). Results: In the weight acceptance phase, FFS showed greater ankle joint moments than RFS in all three (dorsi/plantar-flexion, inversion/eversion, and internal/external rotation) directions ([Formula: see text]). In the forward continuance phase, FFS showed greater dorsi/plantar moments than RFS ([Formula: see text]). In controlled lowering phase, FFS showed smaller dorsi/plantar moments than RFS ([Formula: see text]). Discussion: The greater ankle joint moments of FFS in the weight acceptance phase were influenced by both the greater GRF magnitudes and greater moment arms. The greater dorsi/plantar moments of FFS in the forward continuance phase and the smaller dorsi/plantar moment of FFS in the controlled lowering phase were dominated by the greater moment arm and the smaller ground reaction force, respectively. RFS strategy resulted in smaller ankle joint moments in the majority of stair descent phases (weight acceptance and forward continuance), therefore, RFS would be a better strategy than FFS for stair descent in terms of ankle joint load.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristina Traxler ◽  
Franz Schinabeck ◽  
Eva Baum ◽  
Edith Klotz ◽  
Barbara Seebacher

Abstract Background Large studies have shown that stroke is among the most relevant causes of acquired adult disability. Walking and balance impairment in stroke survivors often contribute to a restriction in daily activities and social participation. Task-oriented training (TOT) is an effective treatment strategy and manual therapy (MT) is used successfully to enhance ankle joint flexibility in this population. No study, however, has compared TOT against its combination with MT in a randomised controlled trial. Aims of this pilot study are therefore to explore the feasibility of a full-scale RCT using predefined feasibility criteria. Secondary aims are to explore the preliminary effects of specific TOT with a combined specific TOT-MT versus a control group in people post stroke. Methods This is a protocol of a 4-week prospective randomised controlled parallel pilot trial in people post stroke at the chronic stage with limited upper ankle joint mobility and an impairment in balance and mobility. At a German outpatient therapy centre using 1:1:1 allocation, 36 patients will be randomised into one of three groups: 15-min talocrural joint MT plus 30-min specific TOT (group A), 45-min specific TOT (group B), and controls (group C). Training will be goal-oriented including tasks that are based on daily activities and increased in difficulty utilising predefined progression criteria based on patients’ skill levels. Interventions will be provided face-to-face 2 times per week, for 4 weeks, in addition to 20-min concurrent x4 weekly home-based training sessions. Data will be collected by blinded assessors at baseline, post-intervention and 4-week follow-up. The primary outcome will be feasibility assessed by recruitment, retention and adherence rates, compliance, adverse events, falls and the acceptability of the intervention. Secondary outcomes will be walking speed, single and dual tasking functional mobility, ankle range of motion, disability and health-related quality of life. Discussion Feasibility provided, results from this study will be used to calculate the sample size of a larger randomised controlled trial to investigate the effects of specific TOT and specific TOT-MT compared to a post stroke control group. Trial registration German Clinical Trials Register, DRKS00023068. Registered on 21.09.2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00023068.


2021 ◽  
Vol 10 ◽  
pp. 117957272110223
Author(s):  
Thomas Hellsten ◽  
Jonny Karlsson ◽  
Muhammed Shamsuzzaman ◽  
Göran Pulkkis

Background: Several factors, including the aging population and the recent corona pandemic, have increased the need for cost effective, easy-to-use and reliable telerehabilitation services. Computer vision-based marker-less human pose estimation is a promising variant of telerehabilitation and is currently an intensive research topic. It has attracted significant interest for detailed motion analysis, as it does not need arrangement of external fiducials while capturing motion data from images. This is promising for rehabilitation applications, as they enable analysis and supervision of clients’ exercises and reduce clients’ need for visiting physiotherapists in person. However, development of a marker-less motion analysis system with precise accuracy for joint identification, joint angle measurements and advanced motion analysis is an open challenge. Objectives: The main objective of this paper is to provide a critical overview of recent computer vision-based marker-less human pose estimation systems and their applicability for rehabilitation application. An overview of some existing marker-less rehabilitation applications is also provided. Methods: This paper presents a critical review of recent computer vision-based marker-less human pose estimation systems with focus on their provided joint localization accuracy in comparison to physiotherapy requirements and ease of use. The accuracy, in terms of the capability to measure the knee angle, is analysed using simulation. Results: Current pose estimation systems use 2D, 3D, multiple and single view-based techniques. The most promising techniques from a physiotherapy point of view are 3D marker-less pose estimation based on a single view as these can perform advanced motion analysis of the human body while only requiring a single camera and a computing device. Preliminary simulations reveal that some proposed systems already provide a sufficient accuracy for 2D joint angle estimations. Conclusions: Even though test results of different applications for some proposed techniques are promising, more rigour testing is required for validating their accuracy before they can be widely adopted in advanced rehabilitation applications.


Sign in / Sign up

Export Citation Format

Share Document