Nature of the Elastic Grinding Tools Working Surface in the Contact Area with the Workpiece

2015 ◽  
Vol 809-810 ◽  
pp. 81-86
Author(s):  
Alexander Mikhailov ◽  
Anatoly Baykov ◽  
Ilya Navka

Formation of the ground surface is the result of the interaction of the cutting elements of the diamond tool with the material being processed, so the nature of the working surface geometry of the grinding wheel (WSW) has principal value on processed surface quality. One of the main parameters that characterize the geometry of the WSW is the law of the grain distribution vertex in height. However, statistical models do not reflect the real picture of the tool interaction with the material being processed in the modelling process of grinding tool on the elastic ligament used for final operations. In the process of contact with the material being processed each diamond grain is moved with an adjacent block ligament, changing the position of the cutting vertex relative to both the midrange cords level and the other grains vertexes. As a result the nature of the grain vertexes distribution changes and the conditions of interaction with the material being processed change too. Studies have shown that the density distribution in height of diamond grains elastic grinding tool vertexes in a static state can be described by different distribution laws. For practical use in the calculation of the processed surface roughness and processing capacity is sufficient to approximate the distribution in height only the most protruding grains. In the area of contact with the processed material the distribution density of the grains elastic tool in height significantly differs from the static characteristics and is defined by the elasticity degree of the grinding tool ligament and machinability index of the workpiece material. The obtained results can serve as initial data for the calculation of the processed surface roughness.

Author(s):  
R. M. Strelchuk ◽  
S. M. Trokhimchuk

Purpose. Research on the mechanism of influence of the straightening conditions of the grinding wheel, including the relative oscillations of the wheel and a multipoint diamond dresser, on the roughness of the ground surface and other machining results. Methodology. Straightening a grinding wheel with a multipoint diamond dresser is a process of high-speed destruction of a hard, abrasive material and its bond under the instantaneous forces, abrasive grains with a hard surface of a diamond crystal. During the grinding wheel straightening, the total component of normal forces causes correspondingly less elastic deformations in the wheel straightening tool system, which increases the accuracy of the geometric shape of the grinding wheel working surface. Findings. The research results make it possible to determine the parameters of the surface roughness of a workpiece and to find ways to control it to increase the efficiency of the grinding process. Originality. The regularities of the influence of the grinding wheel straightening conditions on the state of its working surface have been established. The paper shows that the initial arrangement of grains along the normal to the surface of the wheel is determined by its characteristics. When the abrasive grains hit the surface of the straightening tool, some of the vertices are chipped off, as a result of which the density of the grain vertices on the outer surface of the wheel increases. The straightening process was further developed in the direction of the non-uniform character of the location of the vertices of abrasive grains. The distribution of the grain position at the wheel bond depends on the straightening conditions. Since the removal of the allowance in the process of grinding is carried out by the most protruding grain vertices, then, consequently, the result of grinding will depend on their location and the conditions for the wheel straightening. Practical value. Application of the research results obtained in the work, namely, mathematical modeling of the surface roughness of the grinding wheel during straightening, makes it possible to calculate the roughness parameter of the ground surface. The work also shows that the level of chipping of the grain vertices depends on the grinding wheel straightening conditions, in particular, on the value of the axial feed of the straightening tool. In this case, lower stresses arise in the grains and the bond, and the tool works as a harder one. Straightening conditions affect the stability of the grinding wheel and its self-sharpening process in the machining zone. This determines the significant role of straightening in the results of the grinding process.


2016 ◽  
Vol 686 ◽  
pp. 125-130 ◽  
Author(s):  
Miroslav Neslušan ◽  
Jitka Baďurová ◽  
Anna Mičietová ◽  
Maria Čiliková

This paper deals with cutting ability of progressive Norton Quantum grinding wheel during grinding roll bearing steel 100Cr6 of hardness 61 HRC. Cutting ability of this wheel is compared with conventional grinding wheel and based on measurement of grinding forces as well as surface roughness. Results of experiments show that Norton Quantum grinding wheels are capable of long term grinding cycles at high removal rates without unacceptable occurrence of grinding chatter and surface burn whereas application of conventional wheel can produce excessive vibration and remarkable temper colouring of ground surface. Moreover, while Norton Quantum grinding wheel gives nearly constant grinding forces and surface roughness within ground length at higher removal rates, conventional grinding wheel (as that reported in this study) does not.


2007 ◽  
Vol 329 ◽  
pp. 495-500
Author(s):  
Hang Gao ◽  
W.G. Liu ◽  
Y.G. Zheng

It is experimentally found that existing micro-holes or micro-concaves on the cemented carbide base surface of electroplated CBN wheel is one of important reasons to worsen the combining intensity of the electroplated abrasives layer with the grinding wheel base. It is well solved by sealing the holes or concaves with steam sealing method. Further more the electroplated CBN wheel with cemented carbide base for precision grinding of compressor cylinder vane slot is developed by optimizing the electroplating prescription and process. Productive grinding results show that the ground surface roughness, size precision and the wheel life have reached the advanced index of the same type of wheel imported.


2008 ◽  
Vol 53-54 ◽  
pp. 39-44
Author(s):  
Chang He Li ◽  
Shi Chao Xiu ◽  
Yu Cheng Ding ◽  
Guang Qi Cai

The integration manufacturing technology is a kind of compound precision finishing process that combined grinding with abrasive jet finishing, in which inject slurry of abrasive and liquid solvent into grinding zone between grinding wheel and work surface under no radial feed condition when workpiece grinding were accomplished. The abrasive particles are driven and energized by the rotating grinding wheel and liquid hydrodynamic pressure and increased slurry speed between grinding wheel and work surface to achieve micro removal finishing. In the paper, the machining process validity was verified by experimental investigation. Experiments were performed with plane grinder M7120 and workpiece material 40Cr steel which was ground with the surface roughness mean values of Ra=0.6μm. The machined surface morphology was studied using Scanning Electron Microscope (SEM) and metallography microscope and microcosmic geometry parameters were measured with TALYSURF5 instrument respectively. The experimental results show the novelty process method, not only can obviously diminish longitudinal geometry parameter values of ground surface, but also can attain isotropy surface and uniformity veins at parallel and perpendicular machining direction. Furthermore, the finished surface has little comparability compared to grinding machining surface and the process validity was verified.


2011 ◽  
Vol 325 ◽  
pp. 60-65
Author(s):  
Haruhisa Sakamoto ◽  
Kyoko Nakamura ◽  
Yoshinori Sasaki ◽  
Shinji Shimizu

In this study, the determination method of the number of the effective cutting-edges had been proposed based on the measurements of working surface topography and the grinding force. Furthermore, its validity is made clear based on the topographical analysis of the ground surface roughness of pure copper, which is excellent in transcribing the working surface. From the results, the following are found out: The ground surface topography contains the periodical component, which is originated in the grinding and dressing conditions, on the fractal noise component. The cutting traces by each cutting-edge can be countable from the ground surface profile, and then, the number of the effective cutting-edges is identified at one line within the working surface. On the other hand, the number of the effective cutting-edges also can be identified based on the working surface, but, this method requires the determination of the typical grain shape. From the experiment, it is confirmed that the grain shape should be almost spherical for making the numbers of the effective cutting-edge identified from the working and ground surfaces equal.


2016 ◽  
Vol 874 ◽  
pp. 101-108 ◽  
Author(s):  
Amir Daneshi ◽  
Bahman Azarhoushang

Structuring of the grinding wheels is a promising method to reduce the forces involved in grinding, especially during dry grinding. In this paper, one of the methods of grinding wheel structuring is presented. The structuring process was modeled to find the corresponding dressing parameters for the desired structure dimensions. The cylindrical grinding operation with the structured wheels was simulated to produce a spiral free ground surface. Afterwards, the dry grinding experiments with the structured and non-structured wheels were carried out to evaluate the efficiency of the structured wheels. The results revealed that the grinding forces can be reduced by more than 50% when the grinding wheels are structured, while the surface roughness values increase by 80%.


2022 ◽  
Vol 16 (1) ◽  
pp. 12-20
Author(s):  
Gen Uchida ◽  
Takazo Yamada ◽  
Kouichi Ichihara ◽  
Makoto Harada ◽  
Tatsuya Kohara ◽  
...  

In the grinding process, the grinding wheel surface condition changes depending on the dressing conditions, which affects the ground surface roughness and grinding resistance. Several studies have been reported on the practical application of dressing using prismatic dressers in recent years. However, only a few studies that quantitatively evaluate the effects of differences in dressing conditions using prismatic dresser on the ground surface roughness and grinding resistance have been reported. Thus, this study aims to evaluate quantitatively the effect of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance by focusing on the dressing resistance. In the experiment, dressing is performed by changing the dressing lead and the depth of dressing cut with a prismatic dresser, and the ground surface roughness and grinding resistance are measured. Consequently, by increasing the dressing lead and the depth of dressing cut, the ground surface roughness increased, and the grinding resistance decreased. This phenomenon was caused by the increase in dressing resistance when the dressing lead and the depth of dressing cut were increased, which caused a change in the grinding wheel surface condition. Furthermore, the influence of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance can be quantitatively evaluated by using the dressing resistance.


2007 ◽  
Vol 24-25 ◽  
pp. 261-264 ◽  
Author(s):  
Y. Hasuda ◽  
Y. Suzuki ◽  
Y. Tadokoro ◽  
S. Kinebuchi ◽  
T. Ohashi ◽  
...  

The fundamental experiment of the grinding of the stainless steel using the metal bonded CBN wheel which was excellent in wear resistance was conducted. The most appropriate grinding conditions were obtained by clarifying wear process of grinding wheel and finished ground surface quality. When grinding was carried out up to stock removal 7000mm3/mm, radial wear of grinding wheel %R is 3μm and surface roughness Rz was 0.5μm or less. The grinding ratio Gr becomes about 3000, and long life grinding with little change of surface roughness was possible.


Author(s):  
Chen Li ◽  
Feihu Zhang ◽  
Zhaokai Ma

In order to explore the grinding surface deformation and subsurface damage mechanism for reaction-bonded SiC ceramics, the grinding experiment for reaction-bonded SiC ceramics was carried out under the condition of different grinding depths using two different kinds of grain sizes of grinding wheel. The ground surface morphology of specimen was observed using the field emission scanning electron microscope (5000 ×), and the value of surface roughness Rz was measured by the confocal microscope, which found that there were the brittle removal region and the plastic removal region on the ground surface of reaction-bonded SiC ceramics and it could improve the ground surface quality and proportion of ductile region using the fine grinding wheel and reducing the grinding depth. The specimen was polished by the ion cross section polisher and the ground subsurface was analyzed by the field emission scanning electron microscope, which found that there were transgranular fracture, intergranular fracture, crack bifurcation, ladder-shaped crack and other phenomenon in the grinding process. And it could control the subsurface damage depth using the fine grinding wheel and reducing the grinding depth. The relationship between surface roughness and subsurface damage was analyzed based on the indentation theory, which found that the simulation results were close to the experiment results when the value of m is in the range of 1/8–1/4. When m is 0.2143 calculated by genetic algorithm, the simulation results are the best.


Author(s):  
Dmitrii V. Ardashev ◽  
Aleksandr A. Dyakonov

The paper offers a simulation model of the grinding force with account for the current condition of the grinding wheel's working surface—the value of the abrasive grain blunting area. The model of blunting area takes into account various wear mechanisms for abrasive grains: the mechanical wear is realized on the provisions of the kinetic theory of the strength of a solid subjected to cyclic loads, and the physicochemical wear is based on the intensity of interaction between the abrasive and the treated material at grinding temperatures. The offered model of the grinding force takes into account the unsteady stochastic nature of the interaction between abrasive grains of the grinding wheel and the working surface and the intensity of workpiece material deformation resistance. The model is multifactorial and complex and can be realized by supercomputer modeling. The numerical implementation of the model was performed with application of supercomputer devices engaging parallel calculations. The performed experiments on measurement of the grinding force during circular grinding have shown a 10% convergence with the calculated values. The developed grinding force model can be used as a forecast model to determine the operational functionality of grinding wheel when used in varying technological conditions.


Sign in / Sign up

Export Citation Format

Share Document