Electro Discharge Machining of WC/Ni Mixed Ceramic

2015 ◽  
Vol 813-814 ◽  
pp. 309-316
Author(s):  
Vasudevan Chandrasekaran ◽  
D. Kanagarajan ◽  
R. Karthikeyan

Proper selection of manufacturing conditions is one of the most important aspects in the die sinking Electrical Discharge Machining (EDM) process, as these conditions determine important characteristics such as Material Removal Rate and Surface Roughness.In this work, mathematical models have been developed for relating the Material Removal Rate (MRR) and Surface Roughness (Ra), to machining parameters like tool rotational speed (S), discharge current (C), pulse-on time (T) and flushing pressure (P). The experiment plan adopts the centered central composite design unblocked (CCD). The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). This study highlights that the proposed mathematical models have proven to fit and predict values of performance characteristics close to those readings recorded experimentally with a 95% confidence interval. Results show that are the two significant factors affecting MRR (discharge current and flushing pressure). The discharge current, flushing pressure and electrode rotation have statistical significance on the Ra.

Author(s):  
Gajanan Kamble ◽  
Dr. N. Lakshamanaswamy ◽  
Gangadhara H S ◽  
Sharon Markus ◽  
N. Rajath

Wire cut electrical discharge machining (WEDM) is a hybrid manufacturing technology which enables machining of all engineering materials. This research article deals with investigation on Optimization of the Process Parameters of the wire cut EDM of Bronze material of dimension (80*80*40) in mm. Material removal rate, Surface roughness and Kerf width were studied against the process parameters such as Pulse on time(TON), Pulse off time (TOFF) and Current(IP). The machining parameters for wire EDM were optimized for achieving the combined objectives. As there are three input parameters 27 experiments is carried out and full factorial is used. Optimized parameters were found using (ANOVA) and the error percentage can be validated and parameter contribution for the Material removal rate (MRR) and Surface roughness were found.


2012 ◽  
Vol 626 ◽  
pp. 270-274 ◽  
Author(s):  
Milan Kumar Das ◽  
Kaushik Kumar ◽  
Tapan K. Barman ◽  
Prasanta Sahoo

This paper presents an investigation on the effect and optimization of machining parameters on material removal rate (MRR) in electrical discharge machining (EDM) of EN31 tool steel. For the experiment, four process parameters viz. pulse on time, pulse off time, discharge current and voltage are considered. The settings of machining parameters are determined by using Taguchis orthogonal array (OA). L27 orthogonal array (OA) is considered for the study. The level of importance of the machining parameters on MRR is determined by analysis of variance (ANOVA) test. The optimum machining parameter combination is obtained by the analysis of signal-to-noise (S/N) ratio. The analysis shows that discharge current has the most significant effect on MRR followed by pulse off time and voltage. It is seen that with an increase in discharge current and pulse off time, MRR increases in the studied range. The methodology described here is expected to be highly beneficial to manufacturing industries.


2021 ◽  
Vol 23 (12) ◽  
pp. 224-235
Author(s):  
N. Ethiraj ◽  
◽  
T. Sivabalan ◽  
Saibal Chatterjee ◽  
Seeramsetti Mahesh ◽  
...  

One of the non-conventional techniques of metal removal manufacturing processes is electrical discharge machining (EDM). The objective of this paper is to prepare a composite material consisting of a matrix of Aluminium AA 6061 alloy and Boron carbide (B4C) as reinforcement and investigate the output responses, the material removal rate, the quality of the surface formed and overcut during EDM process. The process parameters discharge current, Pulse on time and Duty cycle along with the weight % of B4C are considered for investigation to investigate the output responses such as material removal rate, surface roughness and overcut. From the experimental results, it is observed that the weight % of reinforcement has more influence on the material removal rate. The parameters discharge current and pulse-on-time plays an important role in reducing the surface roughness and overcut. Microstructural study helps in understanding the effect of process parameters on the output responses.


Author(s):  
G. Ramanan ◽  
R. Elangovan

In aerospace and automobile industries manufacturing complex structures using un-conventional machining is increased due to their precision and accuracy. This research investigates the influence of input parameters such as discharge current, pulse on time, pulse off time and servo speed rate of wire cut electrical discharge machining (WEDM) on material removal rate and surface roughness using Box Behnken design supported with response surface methodology. Aluminium alloy 7075 reinforced with 9 % wt. of activated carbon composite is used to carry out the machining process. Most influencing parameters are subjected as the conductive and non-conductive parameters in WEDM process. To find out the significant influence of each factor, analysis of variance was performed. The mathematical model is established using desirability technique and then the optimal machining parameters are determined. The best achieved WEDM performances - material removal rate and surface roughness are 10.46 mm3/min and 3.32μm respectively, by using optimum machining conditions - discharge current 2000mA, pulse on time 8.9µs, pulse off time 25µs and servo speed rate 150rpm at 0.8597 desirability value.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


Author(s):  
Arun Kumar Rouniyar ◽  
Pragya Shandilya

Magnetic field assisted powder mixed electrical discharge machining is a hybrid machining process with suitable modification in electrical discharge machining combining the use of magnetic field and fine powder in the dielectric fluid. Aluminum 6061 alloy has found highly significance for the advanced industries like automotive, aerospace, electrical, marine, food processing and chemical due to good corrosion resistance, high strength-to-weight ratio, ease of weldability. In this present work, magnetic field assisted powder mixed electrical discharge machining setup was fabricated and experiments were performed using one factor at a time approach for aluminum 6061 alloy. The individual effect of machining parameters namely, peak current, pulse on time, pulse off time, powder concentration and magnetic field on material removal rate and tool wear rate was investigated. The effect of peak current was found to be dominant on material removal rate and tool wear rate followed by pulse on time, powder concentration and magnetic field. Increase in material removal rate and tool wear rate was observed with increase in peak current, pulse on time and a decrease in pulse off time, whereas, for material removal rate increases and tool wear rate decreases up to the certain value and follow the reverse trend with an increase in powder concentration. Material removal rate was increased and tool wear rate was decreased with increase in magnetic field.


2020 ◽  
Vol 861 ◽  
pp. 129-135 ◽  
Author(s):  
Manh Cuong Nguyen ◽  
Luu Anh Tung ◽  
Bui Thanh Danh ◽  
Nguyen Van Cuong ◽  
Tran Thi Hong ◽  
...  

This work is done to determine the effects of the input factors of powder mixed electrical discharge machining (PMEDM) process on the material removal rate (MRR). In the study, the workpiece is cylindrical parts made from 90CrSi alloy steel. Also, five factors containing the pulse on time Ton, the powder concentration Cp, the pulse off time Toff, the pulse current IP, and the server voltage SV were discovered to find their impact on MRR. In addition, the Taguchi method and ANOVA analysis were used to design experiment and analyze the results. In addition, an optimal model of the MRR was introduced. Also, the model has been well verified by comparison with testing, and so it can be used for further studies in the PMEDM process.


2015 ◽  
Vol 787 ◽  
pp. 406-410
Author(s):  
S. Santosh ◽  
S. Javed Syed Ibrahim ◽  
P. Saravanamuthukumar ◽  
K. Rajkumar ◽  
K.L. Hari Krishna

Magnesium alloys are used in many applications, particularly in orthopaedic implants are very difficult to machine by conventional processes because of their complex 3D structure and limited slip system at room temperature. Hence there is an inherent need for alternative processes for machining such intricate profiles. Electric Discharge Machining is growing rapidly in tool rooms, die shops and even in general shop floors of modern industries to facilitate complex machining for difficult-to-machine materials and provide better surface integrity. Therefore, the use of electric discharge machining on ZM21 magnesium alloy is attempted in this paper. Nanographite powder is added for machining zone to enhance the electrical conductivity of EDM oil by way it improves the machining performance. Machining parameters such as the current, pulse on time and pulse off time were process parameters to explore their effects on the material removal rate and tool wear rate. It is observed that, an increased material removal rate was due to the enhanced electrical and thermal conductivity of the EDM oil.


Sign in / Sign up

Export Citation Format

Share Document