Analysis of Center Pivot Irrigation System by Experimental Method

2016 ◽  
Vol 819 ◽  
pp. 549-552
Author(s):  
Mohamad Nor Musa ◽  
Muhammad Ariff Taha

The objective of this project is to design a center pivot irrigation system and determine the efficiency of the system by using experimental method by build a model of the system. For that, a literature study is carried out to understand the theories of center pivot irrigation system. Center pivot irrigation system is the system that can rotate 360 degree around the center pivot. Before model build, the theoretical calculation need to be done to calculate the specification of the model. The model of the experiment purpose build not included the rotation part because the rotation part not gives an effect to the water flow. The experiment procedure follows the standard of North Carolina State University that conducts this type of experiment. From the experiment, the uniformly efficiency of the irrigation system can be defined. Scaled model use in this experiment to determine the uniformly efficiency by using specification from the theoretical calculation. From the previous experiment the uniformly efficiency of the irrigation system is 50% - 60% and the uniformly efficiency of center pivot irrigation system is about 75% - 90%.

Weed Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Erika J. Haug ◽  
Khalied A. Ahmed ◽  
Travis W. Gannon ◽  
Rob J. Richardson

Abstract Additional active ingredients are needed for use in aquatic systems in order to respond to new threats or treatment scenarios, enhance selectivity, reduce use rates, and to mitigate the risk of herbicide-resistance. Florpyrauxifen-benzyl is a new synthetic auxin developed for use as an aquatic herbicide. A study was conducted at North Carolina State University, in which 10 µg L−1 of 25% radiolabeled florpyrauxifen-benzyl was applied to the isolated shoot tissue of ten different aquatic plant species in order to elucidate absorption and translocation patterns in these species. Extremely high levels of shoot absorption were observed for all species and uptake was rapid. Highest shoot absorptions were observed for crested floatingheart [Nymphoides cristata (Roxb.) Kuntze] (A192 =20 µg g−1), dioecious hydrilla [Hydrilla verticillata (L.f.) Royle] (A192 =25.3 µg g−1), variable watermilfoil (Myriophyllum heterophylum Michx.) (A192 =40.1 µg g−1) and Eurasian watermilfoil (Myriophyllum spicatum L.) (A192 =25.3 µg g−1). Evidence of translocation was observed in all rooted species tested with the greatest translocation observed in N. cristata (1.28 µg g-1 at 192 HAT). The results of this study add to the growing body of knowledge surrounding the behavior of this newly registered herbicide within aquatic plants.


BioResources ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Steve McKeand

Nowhere in the world have tree improvement and silviculture had a bigger impact on forest productivity and value to landowners than in the southern US. The economic impact from almost 60 years of tree improvement in the southern United States has been staggering. For example, over 300,000 hectares are planted each year with seedlings from the breeding efforts with loblolly pine (Pinus taeda) by members and staff of the North Carolina State University Cooperative Tree Improvement Program. The present value of continued genetic gains from traditional tree improvement efforts is estimated to be $2.5 billion USD to landowners and citizens in the southern US.


EDIS ◽  
2019 ◽  
Vol 2019 (3) ◽  
Author(s):  
Marcelo Wallau ◽  
Joao Vendramini

Determining forage moisture is an essential procedure for estimating forage mass in pastures, determining harvesting or baling point for preserved forages, and calculating dry matter of feedstuff for total mixed rations. This 3-page document discusses methods and pieces of equipment available to estimate forage moisture. Written by M. Wallau and J. Vendramini, and published by the UF/IFAS Agronomy Department, revised June 2019.  http://edis.ifas.ufl.edu/ag181 Original publication: Chambliss, Carrol. 2002. “Forage Moisture Testing”. EDIS 2002 (1). https://journals.flvc.org/edis/article/view/108091. June 2002 version was adapted from Chamblee, D. S. and J. T Green, Jr. 1995. Production and Utilization of Pasture and Forages in North Carolina, Technical Bulletin 305. Raleigh: North Carolina Agricultural Research Service, North Carolina State University. https://content.ces.ncsu.edu/production-and-utilization-of-pastures-and-forages-in-north-carolina 


Sign in / Sign up

Export Citation Format

Share Document