Non-Linear Numerical Analysis of Unreinforced Masonry Column and Masonry Column Reinforced by FRP Wrapping

2016 ◽  
Vol 827 ◽  
pp. 279-282
Author(s):  
Aneta Maroušková

A numerical model for unreinforced masonry columns and masonry columns reinforced by FRP wrapping is presented in this paper. Both, the bricks and the mortar are modeled as 3D continuum and to the interface between these two materials a non-linear contact law is assigned. The accurate 3D modeling of masonry units and mortar joints within the numerical model leads to high computational cost, but on the other hand, an appropriate analysis tool delivering detailed information about the behavior of masonry columns is obtained. A concrete damaged plasticity model was adopted for mortar and brick. External wrapping by a perfectly-adherent composite based strips and contact between strips and masonry is defined in the next step. The behavior of reinforcement was assumed isotropic and linearly elastic. The response and failure mechanism of masonry columns can be investigated. For all simulations the commercial software package ABAQUS was used. By comparison with results from experiments [1], the performance of the numerical model is evaluated and the obtained numerical results are discussed.

2016 ◽  
Vol 825 ◽  
pp. 27-30 ◽  
Author(s):  
Aneta Maroušková

A numerical analysis for masonry columns is presented in this paper. The behavior and character of deformation of compressed unreinforced masonry columns is investigated and compared with the deformation of masonry columns reinforced by FRP wrapping. The experimental program is part of a research project NAKI [1]. Both, the bricks and the mortar are modeled as 3D continuum and to the interface between these two materials a non-linear contact law is assigned. The contact between reinforcement and masonry support is considered as perfectly-adherent. Two different cases are simulated - the ratio of Young ́s modulus of brick and Young’s modulus of mortar is 5:1, respectively 1:5. For all simulations the commercial software package ABAQUS was used and the obtained numerical results are discussed.


2012 ◽  
Vol 2 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Satinderjit Singh

Median filtering is a commonly used technique in image processing. The main problem of the median filter is its high computational cost (for sorting N pixels, the temporal complexity is O(N·log N), even with the most efficient sorting algorithms). When the median filter must be carried out in real time, the software implementation in general-purpose processorsdoes not usually give good results. This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with only about 9 comparisons per pixel using spatial coherence between neighboring filter computations. The basic algorithm calculates two medians in one step and reuses sorted slices of three vertical neighboring pixels. An extension of this algorithm for 2D spatial coherence is also examined, which calculates four medians per step.


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 891
Author(s):  
Aurea Grané ◽  
Alpha A. Sow-Barry

This work provides a procedure with which to construct and visualize profiles, i.e., groups of individuals with similar characteristics, for weighted and mixed data by combining two classical multivariate techniques, multidimensional scaling (MDS) and the k-prototypes clustering algorithm. The well-known drawback of classical MDS in large datasets is circumvented by selecting a small random sample of the dataset, whose individuals are clustered by means of an adapted version of the k-prototypes algorithm and mapped via classical MDS. Gower’s interpolation formula is used to project remaining individuals onto the previous configuration. In all the process, Gower’s distance is used to measure the proximity between individuals. The methodology is illustrated on a real dataset, obtained from the Survey of Health, Ageing and Retirement in Europe (SHARE), which was carried out in 19 countries and represents over 124 million aged individuals in Europe. The performance of the method was evaluated through a simulation study, whose results point out that the new proposal solves the high computational cost of the classical MDS with low error.


Author(s):  
Seyede Vahide Hashemi ◽  
Mahmoud Miri ◽  
Mohsen Rashki ◽  
Sadegh Etedali

This paper aims to carry out sensitivity analyses to study how the effect of each design variable on the performance of self-centering buckling restrained brace (SC-BRB) and the corresponding buckling restrained brace (BRB) without shape memory alloy (SMA) rods. Furthermore, the reliability analyses of BRB and SC-BRB are performed in this study. Considering the high computational cost of the simulation methods, three Meta-models including the Kriging, radial basis function (RBF), and polynomial response surface (PRSM) are utilized to construct the surrogate models. For this aim, the nonlinear dynamic analyses are conducted on both BRB and SC-BRB by using OpenSees software. The results showed that the SMA area, SMA length ratio, and BRB core area have the most effect on the failure probability of SC-BRB. It is concluded that Kriging-based Monte Carlo Simulation (MCS) gives the best performance to estimate the limit state function (LSF) of BRB and SC-BRB in the reliability analysis procedures. Considering the effects of changing the maximum cyclic loading on the failure probability computation and comparison of the failure probability for different LSFs, it is also found that the reliability indices of SC-BRB were always higher than the corresponding reliability indices determined for BRB which confirms the performance superiority of SC-BRB than BRB.


Author(s):  
Yuki Takashima ◽  
Toru Nakashika ◽  
Tetsuya Takiguchi ◽  
Yasuo Ariki

Abstract Voice conversion (VC) is a technique of exclusively converting speaker-specific information in the source speech while preserving the associated phonemic information. Non-negative matrix factorization (NMF)-based VC has been widely researched because of the natural-sounding voice it achieves when compared with conventional Gaussian mixture model-based VC. In conventional NMF-VC, models are trained using parallel data which results in the speech data requiring elaborate pre-processing to generate parallel data. NMF-VC also tends to be an extensive model as this method has several parallel exemplars for the dictionary matrix, leading to a high computational cost. In this study, an innovative parallel dictionary-learning method using non-negative Tucker decomposition (NTD) is proposed. The proposed method uses tensor decomposition and decomposes an input observation into a set of mode matrices and one core tensor. The proposed NTD-based dictionary-learning method estimates the dictionary matrix for NMF-VC without using parallel data. The experimental results show that the proposed method outperforms other methods in both parallel and non-parallel settings.


2006 ◽  
Vol 39 (2) ◽  
pp. 262-266 ◽  
Author(s):  
R. J. Davies

Synchrotron sources offer high-brilliance X-ray beams which are ideal for spatially and time-resolved studies. Large amounts of wide- and small-angle X-ray scattering data can now be generated rapidly, for example, during routine scanning experiments. Consequently, the analysis of the large data sets produced has become a complex and pressing issue. Even relatively simple analyses become difficult when a single data set can contain many thousands of individual diffraction patterns. This article reports on a new software application for the automated analysis of scattering intensity profiles. It is capable of batch-processing thousands of individual data files without user intervention. Diffraction data can be fitted using a combination of background functions and non-linear peak functions. To compliment the batch-wise operation mode, the software includes several specialist algorithms to ensure that the results obtained are reliable. These include peak-tracking, artefact removal, function elimination and spread-estimate fitting. Furthermore, as well as non-linear fitting, the software can calculate integrated intensities and selected orientation parameters.


2006 ◽  
Vol 04 (03) ◽  
pp. 639-647 ◽  
Author(s):  
ELEAZAR ESKIN ◽  
RODED SHARAN ◽  
ERAN HALPERIN

The common approaches for haplotype inference from genotype data are targeted toward phasing short genomic regions. Longer regions are often tackled in a heuristic manner, due to the high computational cost. Here, we describe a novel approach for phasing genotypes over long regions, which is based on combining information from local predictions on short, overlapping regions. The phasing is done in a way, which maximizes a natural maximum likelihood criterion. Among other things, this criterion takes into account the physical length between neighboring single nucleotide polymorphisms. The approach is very efficient and is applied to several large scale datasets and is shown to be successful in two recent benchmarking studies (Zaitlen et al., in press; Marchini et al., in preparation). Our method is publicly available via a webserver at .


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 511
Author(s):  
Syed Mohammad Minhaz Hossain ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Proper plant leaf disease (PLD) detection is challenging in complex backgrounds and under different capture conditions. For this reason, initially, modified adaptive centroid-based segmentation (ACS) is used to trace the proper region of interest (ROI). Automatic initialization of the number of clusters (K) using modified ACS before recognition increases tracing ROI’s scalability even for symmetrical features in various plants. Besides, convolutional neural network (CNN)-based PLD recognition models achieve adequate accuracy to some extent. However, memory requirements (large-scaled parameters) and the high computational cost of CNN-based PLD models are burning issues for the memory restricted mobile and IoT-based devices. Therefore, after tracing ROIs, three proposed depth-wise separable convolutional PLD (DSCPLD) models, such as segmented modified DSCPLD (S-modified MobileNet), segmented reduced DSCPLD (S-reduced MobileNet), and segmented extended DSCPLD (S-extended MobileNet), are utilized to represent the constructive trade-off among accuracy, model size, and computational latency. Moreover, we have compared our proposed DSCPLD recognition models with state-of-the-art models, such as MobileNet, VGG16, VGG19, and AlexNet. Among segmented-based DSCPLD models, S-modified MobileNet achieves the best accuracy of 99.55% and F1-sore of 97.07%. Besides, we have simulated our DSCPLD models using both full plant leaf images and segmented plant leaf images and conclude that, after using modified ACS, all models increase their accuracy and F1-score. Furthermore, a new plant leaf dataset containing 6580 images of eight plants was used to experiment with several depth-wise separable convolution models.


Sign in / Sign up

Export Citation Format

Share Document