The Development of Lightweight Thermal Insulation Plasters and Experimental Analysis of their Moisture Behavior

2016 ◽  
Vol 861 ◽  
pp. 40-47
Author(s):  
Jitka Peterková ◽  
Martin Sedlmajer ◽  
Jiri Zach ◽  
Magdaléna Kociánová

The development of lightweight thermal insulation plasters containing alternative binders as a partial cement substitute opens the possibilities of using new, eco-friendly materials in civil engineering. The substitution of cement significantly reduces the energy consumption these materials’ manufacturing. In addition, they contribute to the overall energy performance of buildings, which represents another environmental benefit. Concerning the negative effect moisture has on the thermal insulation properties of plasters, the investigation focused on the influence of various hydrophobic agents on the hygrothermal behaviour of the newly developed porous materials. The goal of the research was to develop eco-friendly thermal insulation and rehabilitation silicate materials and to analyse their moisture transport.

2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


Author(s):  
Teresa Parejo-Navajas

AbstractThe behavior of occupants in buildings has an enormous impact on their energy consumption. Despite the efforts to improve the energy efficiency in buildings, there are still many barriers that need to be overcome. Behavior change measures -to improve the energy performance of buildings- are focused on both, the design and the use and operation of buildings. If we are really committed to achieving the sustainable development objective to improve our society’s well-being, special attention should be put into energy use behavior as it has been proven to be an effective way for improvement. ResumoO comportamento dos ocupantes em edifícios tem um enorme impacto no seu consumo de energia. Apesar dos esforços para melhorar a eficiência energética nos edifícios, ainda há muitas barreiras que precisam ser superadas. Medidas de mudança de condutas - para melhorar o desempenho energético dos edifícios - são focadas tanto no design como na utilização e operação de edifícios. Se estamos realmente empenhados em alcançar o objetivo de desenvolvimento sustentável para melhorar o bem-estar da nossa sociedade, uma atenção particular deve ser proporcionada em relação as condutas que influem no uso cotidiano de energia, uma vez que se provou ser um meio eficaz de progresso.


2019 ◽  
Vol 9 (7) ◽  
pp. 1285 ◽  
Author(s):  
José D. Silvestre ◽  
André M. P. Castelo ◽  
José J. B. C. Silva ◽  
Jorge M. C. L. de Brito ◽  
Manuel D. Pinheiro

This paper analyses the environmental, energy, and economic performances of the External Thermal Insulation Composite System (ETICS) using agglomerated insulation cork board (ICB) or expanded polystyrene (EPS) as insulation material applied in the energetic renovation of the building envelope during a 50-year study period. A comparison between ETICS using ICB and EPS, for the same time horizon, is also presented. The environmental balance is based on “Cradle to Cradle” (C2C) Life Cycle Assessment (LCA), focusing on the carbon footprint and consumption of nonrenewable primary energy (PE-NRe). The characteristics of these products in terms of thermal insulation, the increased energy performance provided by their installation for retrofit of the buildings’ envelope, and the resulting energy savings are considered in the energy balance. The estimation of the C2C carbon and PE-NRe saved is considered in the final balance between the energy and environmental performances. ETICS with ICB is environmentally advantageous both in terms of carbon footprint and of PE-NRe. In fact, the production stage of ICB is less polluting, while EPS requires lower energy consumption to fulfil the heating and cooling needs of a flat, due to its lower U-Value, and its lower acquisition cost results in a lower C2C cost. Comparing both ETICS’ alternatives with reference solutions, it was found that the latter only perform better in the economic dimension, and only for an energy consumption to fulfil less than 25% of the heating and cooling needs. This paper represents an advance to the current state-of-the-art by including all the life-cycle stages and dimensions of the LCA in the analysis of solutions for energy renovation of building envelopes.


2019 ◽  
Vol 887 ◽  
pp. 109-116
Author(s):  
Dušan Katunský ◽  
Marek Farárik

The tightening of requirements for energy performance of buildings (EPB) during the period of 2013 to 2021 gradually results in designing buildings with requirements four times lower than we were accustomed to design and construct for many years (U-values, demand of heat for heating). It is necessary to pay increased attention to this topic due to the aforementioned reasons and gradually preparing the laic public, but mainly the professional public for designing, assessment and construction in accordance with the development of EPB requirements. The objective of this paper is to point out the actual requirements for the construction of single storey family houses. Theoretical assumptions, legislative and normative environment are stated for assessment of their thermal insulation properties. The paper contains comparison and analysis of calculated EPB values of the selected representatives of single-storey family houses representing a large portion of their construction in the practice at the present time.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Marilena De Simone ◽  
Gianmarco Fajilla

The role that occupants have on energy consumption and performance of buildings is known, but still requires a great deal of research. In this paper, the most common techniques to detect occupancy and occupant behavior in buildings are categorized with their advantages and disadvantages. Being the buildings characterized by different energy usage, the presentation of the studies that applied surveys and monitoring campaigns is conducted with a differentiation between residential and office buildings.


2010 ◽  
pp. 93-95
Author(s):  
Farhan Manzoor Ahmed Khan

Mankind’s rapidly increasing advancements in different industrial sectors demand a great price of environmental impact and climate change in return, specifically in the buildings and construction industry. The largest source of greenhouse gas emissions and energy consumption worldwide are buildings, estimated to account for almost 48% of all such emissions. Energy-related Carbon Dioxide (CO2) counts for about 82% of all greenhouse gases emitted by human activities. This total energy consumption translates to approximately 3.5 Billion Euros per annum. According to a report from the United Nations Environment Programme, the right mix of appropriate government regulations, greater use of energy-saving technologies and user behavioural changes can substantially reduce CO2 emissions from buildings. The Energy Performance of Buildings Directive places an onus on all EU member states to rate the energy performance of buildings in a Building Energy Rating certificate which is effectively an energy label required at the point of rental ...


2021 ◽  
Author(s):  
◽  
Brittany Grieve

<p>This thesis explored the impact of thermal insulation on the energy performance of New Zealand air-conditioned commercial office buildings. A sample of calibrated energy models constructed using real building performance data and construction information was used to ensure that the results produced were as realistic as possible to the actual building performance of New Zealand commercial office buildings. The aim was to assess how different climates and building attributes impact thermal insulation's ability to reduce energy consumption in New Zealand commercial office buildings.   Driven by the ever increasing demands for healthier, more comfortable, more sustainable buildings, building regulations have steadily increased the levels of insulation they require in new buildings over time. Improving the thermal properties of the building envelope with the addition of thermal insulation is normally used to reduce the amount of heating and cooling energy a building requires. Thermal insulation reduces the conductive heat transfer through the building envelope and with a higher level of thermal resistance, the less heat would transfer through the envelope. Consequently, the common expectation is that the addition of thermal insulation to the building envelope will always reduce energy consumption. However, this assumption is not always the case. For internal load dominated buildings located in certain climates, the presence of any or a higher level of thermal insulation may prevent heat loss through the wall, increasing the cooling energy required. This issue is thought to have not been directly examined in literature until 2008. However, an early study undertaken in New Zealand in 1996 found that for climates similar or warmer than Auckland, the addition of insulation could be detrimental to an office building's energy efficiency due to increased cooling energy requirements.  The energy performance of a sample of 13 real New Zealand office building energy models with varying levels of thermal insulation in 8 locations was examined under various scenarios. A parametric method of analysis using building energy modelling was used to assess the energy performance of the buildings. Buildings were modelled as built and standardised with the current NZS4243:2007 regulated and assumed internal load and operational values. The effect the cooling thermostat set point temperature had on the buildings' energy performance at varying levels of insulation was also tested.   The study concluded that the use of thermal insulation in New Zealand office buildings can cause an increase in cooling energy for certain types of buildings in any of the eight locations and thermal insulation levels explored in the study. The increase in cooling energy was significant enough to increase the total energy consumption of two buildings when modelled as built. These buildings were characterised by large internal loads, low performance windows with high window to wall ratios and low surface to volume ratios. The current minimum thermal resistance requirements were found to not be effective for a number of buildings in North Island locations.</p>


2021 ◽  
Author(s):  
◽  
Brittany Grieve

<p>This thesis explored the impact of thermal insulation on the energy performance of New Zealand air-conditioned commercial office buildings. A sample of calibrated energy models constructed using real building performance data and construction information was used to ensure that the results produced were as realistic as possible to the actual building performance of New Zealand commercial office buildings. The aim was to assess how different climates and building attributes impact thermal insulation's ability to reduce energy consumption in New Zealand commercial office buildings.   Driven by the ever increasing demands for healthier, more comfortable, more sustainable buildings, building regulations have steadily increased the levels of insulation they require in new buildings over time. Improving the thermal properties of the building envelope with the addition of thermal insulation is normally used to reduce the amount of heating and cooling energy a building requires. Thermal insulation reduces the conductive heat transfer through the building envelope and with a higher level of thermal resistance, the less heat would transfer through the envelope. Consequently, the common expectation is that the addition of thermal insulation to the building envelope will always reduce energy consumption. However, this assumption is not always the case. For internal load dominated buildings located in certain climates, the presence of any or a higher level of thermal insulation may prevent heat loss through the wall, increasing the cooling energy required. This issue is thought to have not been directly examined in literature until 2008. However, an early study undertaken in New Zealand in 1996 found that for climates similar or warmer than Auckland, the addition of insulation could be detrimental to an office building's energy efficiency due to increased cooling energy requirements.  The energy performance of a sample of 13 real New Zealand office building energy models with varying levels of thermal insulation in 8 locations was examined under various scenarios. A parametric method of analysis using building energy modelling was used to assess the energy performance of the buildings. Buildings were modelled as built and standardised with the current NZS4243:2007 regulated and assumed internal load and operational values. The effect the cooling thermostat set point temperature had on the buildings' energy performance at varying levels of insulation was also tested.   The study concluded that the use of thermal insulation in New Zealand office buildings can cause an increase in cooling energy for certain types of buildings in any of the eight locations and thermal insulation levels explored in the study. The increase in cooling energy was significant enough to increase the total energy consumption of two buildings when modelled as built. These buildings were characterised by large internal loads, low performance windows with high window to wall ratios and low surface to volume ratios. The current minimum thermal resistance requirements were found to not be effective for a number of buildings in North Island locations.</p>


Author(s):  
Salah Ouldboukhitine ◽  
Sofiane Amziane ◽  
Maroua Benkhaled

The energy performance of buildings represents a major challenge in terms of sustainable development. The buildings and buildings construction sectors combined are responsible for over one-third of global final energy consumption and nearly 40% of total direct and indirect CO2 emissions. In order to reduce the energy consumption of buildings and their harmful impact on the environment, special attention has been paid in recent years to the use of bio-based materials. Several works have been carried out in the last decades in order to model the coupled heat, air and moisture transfers in the building envelope but the difficulties lies in the identification of numerous parameters that the HAM proposed models use. In the present paper, a sensitivity study regarding the HAM parameters is implemented in order to apprehend the most determining parameters during the transfer processes. A reduced model based on these parameters is then determined.


Sign in / Sign up

Export Citation Format

Share Document