scholarly journals A Visual Method for Detailed Analysis of Building Life Cycle Assessment Results

2019 ◽  
Vol 887 ◽  
pp. 319-326 ◽  
Author(s):  
Benedek Kiss ◽  
Zsuzsa Szalay

In the environmental analysis of buildings, Life Cycle Assessment (LCA) is gaining more and more interest. It is due to the fact, that LCA is very comprehensive in considering many impacts in all life-cycle phases of the examined building. Since buildings have a complicated geometry that is built up with numerous constructions that consist of many materials, and the life-cycle includes many phases, the results of an assessment are likely to be difficult to analyze in detail. In this paper we introduce a visual method to help architects and analysts to quickly understand the results of an environmental assessment. It includes the hierarchic visualization of the performance of the individual elements of the building. Both energy use and environmental impacts can be presented. Also the contribution of the different life-cycle phases in the overall impact is visualized.There are increasing efforts nowadays to find the most efficient way to improve the environmental performance of buildings. This can be supported with a detailed analysis of the results. The method is presented through a case study of a realized energy efficient one-family house.

2021 ◽  
Author(s):  
Hayley Cormick

This research aims to contribute to quantifying whole building life cycle assessment using various software tools to determine how they can aid the construction industry in reducing carbon emissions, and in particular embodied emissions, through analysis and reporting. The conducted research seeks to examine and compare three whole building life cycle assessment tools; Athena Impact Estimator, Tally and One-Click LCA to relate the input variability to the outputs of the three programs. The three whole building life-cycle assessments were conducted using a case study building with an identical bill of materials and compared to determine the applicability and strengths of one program over another. The research confirmed that the three programs output significantly different results given the variability in scope, allowable program inputs and generated “black-box” back-end calculations, where the outputted whole building life cycle carbon equivalents of One-Click LCA is less than half than of Tally meaning the programs outputs cannot be simply compared side-by-side.


2004 ◽  
Vol 06 (02) ◽  
pp. 153-175 ◽  
Author(s):  
ALEXANDRA URIE ◽  
SUZAN DAGG

This paper introduces the need for the responsible selection of construction products and then analyses a number of assessment methodologies. Some computer packages and guidebooks that assist in life cycle assessment or aid construction product selection are briefly reviewed. Issues that affect decision-making and complexities in the construction industry are discussed. A tool for assisting responsible construction product selection is then presented that involves carrying out a streamlined life cycle assessment, comparing a novel product to a traditional product. The tool is pragmatic because only three environmental criteria are considered (resource consumption, energy use and human and ecological impacts) and a relative rather then absolute assessment is required. The decision-assisting methodology is demonstrated with a case study. The limitations and benefits of the streamlined LCA are finally presented.


Procedia CIRP ◽  
2018 ◽  
Vol 69 ◽  
pp. 160-165 ◽  
Author(s):  
Carolina Colli ◽  
Alain Bataille ◽  
Emmanuel Antczak ◽  
François Buyle-Bodin

2021 ◽  
Author(s):  
Hayley Cormick

This research aims to contribute to quantifying whole building life cycle assessment using various software tools to determine how they can aid the construction industry in reducing carbon emissions, and in particular embodied emissions, through analysis and reporting. The conducted research seeks to examine and compare three whole building life cycle assessment tools; Athena Impact Estimator, Tally and One-Click LCA to relate the input variability to the outputs of the three programs. The three whole building life-cycle assessments were conducted using a case study building with an identical bill of materials and compared to determine the applicability and strengths of one program over another. The research confirmed that the three programs output significantly different results given the variability in scope, allowable program inputs and generated “black-box” back-end calculations, where the outputted whole building life cycle carbon equivalents of One-Click LCA is less than half than of Tally meaning the programs outputs cannot be simply compared side-by-side.


2020 ◽  
Vol 13 (1) ◽  
pp. 299
Author(s):  
Ali Azhar Butt ◽  
John Harvey ◽  
Arash Saboori ◽  
Maryam Ostovar ◽  
Manuel Bejarano ◽  
...  

The Federal Aviation Administration (FAA) has taken measures to improve safety, reduce costs, increase resilience, and improve the sustainability of the United States (U.S.) airfield infrastructure by using a life-cycle cost analysis methodology to increase the efficient use of economic resources needed for expanding and preserving the airfield system. However, a life-cycle assessment (LCA) approach for evaluating the environmental impacts of decisions regarding airfield infrastructure has yet to be fully developed and applied. The objective of this study is to demonstrate the use of the airfield LCA framework that was developed for the FAA and can be used by U.S. airports. The comparison of alternative pavement designs at Nashville International Airport (BNA) is presented. The scope of the study was from cradle to laid; materials, materials transportation, and construction stages of the pavement life cycle are considered, and the maintenance, use and end of life stages are not considered. Primary data were acquired from BNA and secondary data were used in situations of unavailability of primary data. The case study showed that performing LCA provides opportunities for airports to consider energy use and environment-related impacts in the decision-making process.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


Author(s):  
Elias Marvinney ◽  
Alissa Kendall

Abstract Purpose California’s Central Valley produces more than 75% of global commercial almond supply, making the life cycle performance of almond production in California of global interest. This article describes the life cycle assessment of California almond production using a Scalable, Process-based, Agronomically Responsive Cropping System Life Cycle Assessment (SPARCS-LCA) model that includes crop responses to orchard management and modeling of California’s water supply and biomass energy infrastructure. Methods A spatially and temporally resolved LCA model was developed to reflect the regional climate, resource, and agronomic conditions across California’s Central Valley by hydrologic subregion (San Joaquin Valley, Sacramento Valley, and Tulare Lake regions). The model couples a LCA framework with region-specific data, including water supply infrastructure and economics, crop productivity response models, and dynamic co-product markets, to characterize the environmental performance of California almonds. Previous LCAs of California almond found that irrigation and management of co-products were most influential in determining life cycle CO2eq emissions and energy intensity of California almond production, and both have experienced extensive changes since previous studies due to drought and changing regulatory conditions, making them a focus of sensitivity and scenario analysis. Results and discussion Results using economic allocation show that 1 kg of hulled, brown-skin almond kernel at post-harvest facility gate causes 1.92 kg CO2eq (GWP100), 50.9 MJ energy use, and 4820 L freshwater use, with regional ranges of 2.0–2.69 kg CO2eq, 42.7–59.4 MJ, and 4540–5150 L, respectively. With a substitution approach for co-product allocation, 1 kg almond kernel results in 1.23 kg CO2eq, 18.05 MJ energy use, and 4804 L freshwater use, with regional ranges of 0.51–1.95 kg CO2eq, 3.68–36.5 MJ, and 4521–5140 L, respectively. Almond freshwater use is comparable with other nut crops in California and globally. Results showed significant variability across subregions. While the San Joaquin Valley performed best in most impact categories, the Tulare Lake region produced the lowest eutrophication impacts. Conclusion While CO2eq and energy intensity of almond production increased over previous estimates, so too did credits to the system for displacement of dairy feed. These changes result from a more comprehensive model scope and improved assumptions, as well as drought-related increases in groundwater depth and associated energy demand, and decreased utilization of biomass residues for energy recovery due to closure of bioenergy plants in California. The variation among different impact categories between subregions and over time highlight the need for spatially and temporally resolved agricultural LCA.


Sign in / Sign up

Export Citation Format

Share Document