Review on the Research of Indoor Environment Quality and Building Energy Consumption

2011 ◽  
Vol 90-93 ◽  
pp. 3043-3046 ◽  
Author(s):  
Xue Bin Yang ◽  
Zhi Pan Gu ◽  
Ji Chun Yang ◽  
Guang Ping Lin

This study reviews some published literatures to survey the recent research on indoor environment quality and building energy consumption. The indoor environment quality is categorized and defined as different indices and variables. The building energy consumption can be determined by ventilation rates, thermal comfort, adaptive thermal comfort, neutral temperature, set-point temperature, indoor air quality, air velocity, and non-occupied hours. Various climates or regions such as subtropical climates in Hong Kong, Italy, three climatic zones in Greece, hot and dry climates in Africa, hot and humid climate in Thailand, are contained. The building types include office buildings, commercial buildings and school buildings, and the data can be obtained from a simulation model or the field database. It can be concluded that the indoor environment quality has a significant influence on the building energy consumption, and a validated thermal model is be a practical tool to investigate the effect of the indoor environmental parameters.

Author(s):  
Heangwoo Lee ◽  
Janghoo Seo

While previous research has shown the use of attachable air-caps on windows to efficiently reduce a building’s energy consumption, the air-caps considered had to be attached to the entire window’s surface, thus limiting the occupants’ view and creating the inconvenience of needing to detach and attach the air-caps. In this study, a window-mounted air-cap roller module using Velcro tape that may be easily attached, detached, and rolled up or down was developed and performance tested in a full-scale test bed. It was found that as the area of the air-caps attached on a window increased, the required indoor lighting energy increased. However, the window insulation improved, thus reducing the cooling and heating energy needed. Attaching the air-caps to the entire window surface effectively reduced the building’s energy consumption, but views through the window may be disturbed. Thus, the developed window-mounted air-caps enable an occupant to reduce the building energy consumption and maintain their view according to their need. The findings of this study may contribute to a reduction in building energy consumption without sacrificing a pleasant indoor environment. Further studies may be needed to verify their efficacy under varying indoor and outdoor conditions.


2011 ◽  
Vol 224 ◽  
pp. 192-197
Author(s):  
Jing Wu ◽  
Hao Xie

Building energy conservation has become the worldwide tendency since the mid-1970s. The Theory of Sustainable Development raised in 1990s as well as the deterioration of ecological environment made the building energy conservation became the international focus all over the world. China is a country with high energy consumption and large population and the percentage of its building energy consumption has reached about 25% on total energy consumption. The energy conservation condition of building external wall is one of the direct influencing factors of thermal comfort of indoor environment. However, greening is a kind of natural sunshade of the nature. The key to the study is how to improve the temperature of building walls and thermal comfort of indoor environment by the way of greening sunshade of external walls.


2019 ◽  
Vol 11 (1) ◽  
pp. 266 ◽  
Author(s):  
Yupeng Wang ◽  
Hiroatsu Fukuda

The properties of building envelopes significantly affect indoor building energy consumption, indoor thermal comfort, and building durability. In the current standards for Japanese residential energy efficiency, insulation placement is not well regulated. Meanwhile, it is common in Japan to use air-conditioning intermittently, rather than having the units operate continuously. Therefore, considering specific Japanese lifestyles, we investigated insulation performance. In this research, we: (1) developed the interior insulation to include insulation on walls, ceilings and floors of building units (all of the interior surfaces) to achieve building energy savings by avoiding heat loss through thermal bridges; (2) discussed and demonstrated the effects of high heat capacitance for each of the building components and the thermal bridge by conducting building environmental simulations; (3) conducted simulations in seven cities in Japan and discussed the applicability of these different weather conditions; and (4) compared temperature distributions to investigate differences in indoor comfort with partial heating on winter nights. We demonstrated the energy saving and thermal comfort advantages of interior insulation. This research provides an innovative insulation style based on Japanese lifestyles that contributes to new energy-saving standards and formulations.


Sign in / Sign up

Export Citation Format

Share Document