scholarly journals Development of Window-Mounted Air Cap Roller Module

Author(s):  
Heangwoo Lee ◽  
Janghoo Seo

While previous research has shown the use of attachable air-caps on windows to efficiently reduce a building’s energy consumption, the air-caps considered had to be attached to the entire window’s surface, thus limiting the occupants’ view and creating the inconvenience of needing to detach and attach the air-caps. In this study, a window-mounted air-cap roller module using Velcro tape that may be easily attached, detached, and rolled up or down was developed and performance tested in a full-scale test bed. It was found that as the area of the air-caps attached on a window increased, the required indoor lighting energy increased. However, the window insulation improved, thus reducing the cooling and heating energy needed. Attaching the air-caps to the entire window surface effectively reduced the building’s energy consumption, but views through the window may be disturbed. Thus, the developed window-mounted air-caps enable an occupant to reduce the building energy consumption and maintain their view according to their need. The findings of this study may contribute to a reduction in building energy consumption without sacrificing a pleasant indoor environment. Further studies may be needed to verify their efficacy under varying indoor and outdoor conditions.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1909 ◽  
Author(s):  
Heangwoo Lee ◽  
Janghoo Seo

While previous research has shown the use of attachable air-caps on windows to efficiently reduce a building’s energy consumption, the air-caps considered had to be attached to the entire window’s surface, thus limiting the occupants’ view and creating the inconvenience of needing to detach and attach the air-caps. In this study, a window-mounted air-cap roller module using Velcro tape that may be easily attached, detached, and rolled up or down was developed and performance tested in a full-scale test bed. It was found that as the area of the air-caps attached on a window increased, the required indoor lighting energy increased. However, the window insulation improved, thus reducing the cooling and heating energy needed. Attaching the air-caps to the entire window surface effectively reduced the building’s energy consumption, but views through the window may be disturbed. Thus, the developed window-mounted air-caps enable an occupant to reduce the building energy consumption and maintain their view according to their need. The findings of this study may contribute to a reduction in building energy consumption without sacrificing a pleasant indoor environment. Further studies may be needed to verify their efficacy under varying indoor and outdoor conditions.


2020 ◽  
pp. 77-84
Author(s):  
Jian Yao ◽  
LiYi Chen ◽  
Wu Jin

Occupant behaviour significantly influences building energy consumption. This paper is devoted to studies the uncertainty of daylighting performance and lighting energy of manual solar shades on the south facade. A developed stochastic model for manual solar shades was used for co-simulation by BCVTB. Results show that uncertainty of shade action was not suppressed by the shade behaviour model with very weak relationship between different simulation outputs. Uncertainty of daylighting performance is 15.08 % while lighting energy uncertainty is 10.38 %. Although this level of energy uncertainty is not very significant, it influences economic analysis of manual solar shades and therefore, occupant related uncertainty should be taken into consideration when predicting energy performance of manual shades.


2011 ◽  
Vol 90-93 ◽  
pp. 3043-3046 ◽  
Author(s):  
Xue Bin Yang ◽  
Zhi Pan Gu ◽  
Ji Chun Yang ◽  
Guang Ping Lin

This study reviews some published literatures to survey the recent research on indoor environment quality and building energy consumption. The indoor environment quality is categorized and defined as different indices and variables. The building energy consumption can be determined by ventilation rates, thermal comfort, adaptive thermal comfort, neutral temperature, set-point temperature, indoor air quality, air velocity, and non-occupied hours. Various climates or regions such as subtropical climates in Hong Kong, Italy, three climatic zones in Greece, hot and dry climates in Africa, hot and humid climate in Thailand, are contained. The building types include office buildings, commercial buildings and school buildings, and the data can be obtained from a simulation model or the field database. It can be concluded that the indoor environment quality has a significant influence on the building energy consumption, and a validated thermal model is be a practical tool to investigate the effect of the indoor environmental parameters.


2021 ◽  
Vol 13 (19) ◽  
pp. 10607
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Yanping Yuan ◽  
Ji Ni

Human behaviors that greatly influence building energy consumption are stimulated by the indoor environment. However, the relative importance of different environmental factors remains unclear. Previous literature mostly focused on single behavior. Holistic study of multiple energy-related behaviors is scarce. To fill the gap, this study investigated 22 government office buildings in Sichuan using questionnaires and field measurement. Environmental factors were ranked based on the two dimensions of “importance level’level” and “satisfaction level”. The key energy-related behaviors were identified by the comparative study between low- and high-energy-consuming buildings. Lastly, interactions between the building energy consumption, indoor environment quality, occupants’ satisfaction, and human behaviors were analyzed. Questionnaires reveal that most occupants consider indoor air quality as the prior “pain point” while feeling satisfied enough with the thermal environment. Although people attach less importance to the acoustic environment, they manifest evident discontent, suggesting that noise control is an urgent imperative. In contrast, occupants are relatively unconcerned with illuminance, which implies the feasibility of saving energy by reasonably reducing lighting requirements of some non-critical areas. The comparative study indicates that increased energy consumption was attributable to extra personal appliances, wasteful air conditioning habits, and the lack of ventilation in summer. The objective environment of high-energy-consuming buildings is slightly better. However, the difference in perceived satisfaction was not obvious. The findings of this study contribute to determining the most noteworthy environmental factor and the key energy-related behaviors and provide reference information for optimizing energy-saving strategies.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Sign in / Sign up

Export Citation Format

Share Document