Fatigue Behavior of Corroded Reinforced Concrete Beams-a Review

2011 ◽  
Vol 94-96 ◽  
pp. 1523-1526
Author(s):  
Shi Bin Li ◽  
Hong Wei Tang ◽  
Xin Wang

Reinforced concrete (RC) structures are widely used in civil engineering for their merits. A good-quality concrete provides a highly alkaline environment that forms a passive film on reinforcement surface, preventing steel bars from corroding. Due to chloride attack or concrete carbonization, corrosion of embedded reinforcement in concrete members is common for RC structures. Much importance should be attached to the fatigue of corroded concrete bridges because they bear not only static loads but also alternate loads. Followed along with the aging of bridge structures, the increase of traffic volumes, the augment of vehicle loads as well as the deterioration of service environment, many corroded concrete bridges are urgently needed security appraisal and residual fatigue life forecast. Fatigue of corroded RC beams is a key problem for the existing corrosion-damaged concrete bridges. But the interrelated research was little. Based on the most new study information, the production on fatigue of corroded concrete beams was listed and analyzed, and the problems on fatigue of corroded concrete beams were indicated.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3321
Author(s):  
Hyunjin Ju ◽  
Meirzhan Yerzhanov ◽  
Alina Serik ◽  
Deuckhang Lee ◽  
Jong R. Kim

The consumption of structural concrete in the construction industry is rapidly growing, and concrete will remain the main construction material for increasing urbanization all over the world in the near future. Meanwhile, construction and demolition waste from concrete structures is also leading to a significant environmental problem. Therefore, a proper sustainable solution is needed to address this environmental concern. One of the solutions can be using recycled coarse aggregates (RCA) in reinforced concrete (RC) structures. Extensive research has been conducted in this area in recent years. However, the usage of RCA concrete in the industry is still limited due to the absence of structural regulations appropriate to the RCA concrete. This study addresses a safety margin of RCA concrete beams in terms of shear capacity which is comparable to natural coarse aggregates (NCA) concrete beams. To this end, a database for reinforced concrete beams made of recycled coarse aggregates with and without shear reinforcement was established, collecting the shear specimens available from various works in the existing literature. The database was used to statistically identify the strength margin between RCA and NCA concrete beams and to calculate its safety margin based on reliability analysis. Moreover, a comparability study of RCA beams was conducted with its control specimens and with a database for conventional RC beams.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


2020 ◽  
Vol 1002 ◽  
pp. 604-614
Author(s):  
Hayder Hussein H. Kammona ◽  
Muhammad Abed Attiya ◽  
Qasim M. Shakir

This study simulates a procedure of rehabilitation of reinforced concrete beams with the aid of ANSYS 17 software. In this work, the BIRTH and DEATH procedure (in ANSYS) was adopted to model the post-repairing stage. This aspect has rarely been considered by previous studies that utilized a carbon fiber reinforced polymer (CFRP) sheet when retrofitting. To verify the suggested technique, six specimens were analyzed with two values of shear span-to-depth ratios (3 and 4) and three spaces of CFRP sheets (100mm, 150mm and 200mm). The effect of the repairing process on the structural performance of the retrofitted beam is also investigated.It is found that the suggested technique yielded a good agreement with the experimental results and the maximum differences in the failure loads between the numerical and experimental results were 10% and 4% for shear span-to-depth ratios of 3 and 4, respectively. It was also ascertained that upgrading reinforced concrete members within the early stages of loading showed a better enhancement in the loading capacity compared to upgrading reinforced concrete members close to the juncture of failure.


Author(s):  
Nazar Oukaili ◽  
Mohammed Khattab

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. Specimens in each group were categorized as follows: two traditional reinforced concrete specimens with different intensity of tension reinforcement; three partially prestressed specimens with bonded strands; three partially prestressed specimens with unbonded strands; and two fully prestressed concrete specimens. The main variable, which was considered for all specimens was the partial prestressing ratio (PPR). It was observed that, the ductility of reinforced concrete beams was insignificantly increased during subjecting to limited repeated loading. For fully prestressed and partially prestressed concrete beams with high level of PPR, the ductility was significantly enhanced, while, it was decreased for specimens with small level of PPR.


2016 ◽  
Vol 13 (2) ◽  
pp. 160
Author(s):  
A.H. Al-Saidy

Structural elements such as beams, slabs, and columns may require strengthening or repair during their service life. Different repair materials (RMs) are available and it is usually difficult to choose the best ones, especially when considering the cost of such materials. This paper presents the results of an experimental investigation of patch RMs on plain concrete prisms as well as on reinforced concrete beams. Three cement-based RMs available in the market with different mechanical properties and an ordinary Portland cement (OPC) mix produced in the lab were used in the study. Damage was induced in prisms/beams and then repaired using different materials. The experimental work included assessment of the flexural strength of damaged/repaired plain concrete prisms; slant shear (bond) strength between the concrete and the RM; axial strength of damaged/repaired plain concrete prisms and bond of the repair materials in damaged/repaired reinforced concrete beams loaded to failure. The test results showed that all RMs performed well in restoring the strength of damaged plain concrete. Compatibility of the RMs with substrate concrete was found to be more important in the behavior than superior mechanical properties of the RMs. No difference was noted in the behavior between the RMs in repairing reinforced concrete beams at the tension side. 


Sign in / Sign up

Export Citation Format

Share Document