Numerical Simulation on Thermo-Forming Process of the Ultra High Strength Steel

2014 ◽  
Vol 1004-1005 ◽  
pp. 1265-1269
Author(s):  
Bi Yan ◽  
Ma Xu ◽  
Meng Chen ◽  
Yang Guang

Thermoforming is a typical method of ultra high strength steel plate’s forming for the automotive industry, where the 22MnB5 sheet is widely used. This article discusses how to simulate the thermoforming process of the 22MnB5 by using the thermal coupling software which is called Pam-stamp 2011. After that, we got the distribution of temperature、thickness and thinning rate of thermoforming parts.

2014 ◽  
Vol 622-623 ◽  
pp. 201-206 ◽  
Author(s):  
Kenichiro Mori ◽  
Tomoyoshi Maeno ◽  
Shohei Nakamoto

A hot spline forming process of die-quenched gear drums using resistance heating of a side wall of a cup formed by cold deep drawing and ironing was developed. The side wall having uniform cross-sectional area is resistance-heated by passage of the current in the axial direction, the heated side wall of the drawn cup is ironed and is finally die-quenched. The gear drum was successfully formed and the hardness was between 400 and 500 HV. Not only the formability was improved but also the formed dram was hardly oxidised because of rapid resistance heating.


2018 ◽  
Vol 878 ◽  
pp. 296-301
Author(s):  
Dong Won Jung

The roll forming is one of the simplest manufacturing processes for meeting the continued needs of various industries. The roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for making structural components. In order to reduce the thinning of the sheet product, traditionally the roll forming has been suggested instead of the stamping process. The increased product performance, higher quality, and the lowest cost with other advantages have made roll forming processes suitable to form any shapes in the sheets. In this numerical study, a Finite Element Method is applied to estimate the stress, strain and the thickness distribution in the metal sheet with quadrilateral shape, ribs formed by the 11 steps roll forming processes using a validated model. The metal sheet of size 1,000 × 662 × 1.6 mm taken from SGHS steel was used to form the quadrilateral shape ribs on it by the roll forming process. The simulation results of the 11 step roll forming show that the stress distribution was almost uniform and the strain distribution was concentrated on the ribs. The maximum thinning strain was observed in the order of 15.5 % in the middle rib region possibly due to the least degree of freedom of the material.


2010 ◽  
Vol 129-131 ◽  
pp. 390-394
Author(s):  
Cheng Xi Lei ◽  
Zhong Wen Xing ◽  
Hong Ya Fu

The numerical simulation of hot-stamping process was carried out for UHSS square-cup parts, and the influence of dies temperature on the hot-stamping process was anlysised. Besides, through the microstructure analysis and mechanical properties testing of the formed parts, effects of dies temperature on microstructures and mechanical properties of hot-stamping square-cup parts were obtained. The experiment and simulation results showed that the mechanical properties of the UHSS are strongly dependent on the temperature, so the dies temperature is one of the most important parameters that have to be taken into account in designing the hot-forming dies and the hot-forming process.


2014 ◽  
Vol 608-609 ◽  
pp. 71-76
Author(s):  
Bi Wang

In recent years, the high-strength steel has been widely used in the automotive industry. As the high-strength steel sheet is prone to producing forming defects and serious springback problem in the stamping forming process, the finite element technique is used to simulate the value of stamping forming and springback process, so as to improve the stamping parameters and mold design according to the simulation results to achieve effective control of the springback value and efficiently improve the manufacturing precision of covering parts.


2010 ◽  
Vol 154-155 ◽  
pp. 1033-1039
Author(s):  
Xu Zhang ◽  
Jie Zhou

The door beam inside the car door is an key component to improve the security of passengers, most great automobile manufacturing companies use ultra-high strength steel plate to manufacture it,however, it is very difficult to form in room temperature,so commonly it is made by hot stamping but the cost is too high. This article gives a solution to deal with this problem by the use of FEM software in simulating and optimizing the forming process of one kind of ultra-high strength steel door beam in room temperature, and main study is in the influence of temperature on internal organization changes of the ultra-high strength sheet and springback by comparing the simulation result and real sample, and meanwhile convex roofs are added in the addendum to optimize the surface. It is helpful on how to design die face in manufacturing the related ultra-high strength steel parts.


Author(s):  
M. Amraei ◽  
M. Dabiri ◽  
T. Björk ◽  
T. Skriko

Deformation of a direct quenched type of ultra-high strength steel (UHSS) with low-carbon content is studied in this work. Although this material, as manufactured, combines high strength and good ductility, it is highly sensitive to the workshop fabrication processes used. The presence of stress concentration due to structural discontinuity or notch effects can accentuate the effect of fabrication processes on the deformation capacity of the material. To evaluate the influence of fabrication methods on deformation capacity, a series of tensile tests are done on both pure base material (BM) and after the steel has been subjected to heat input (HI) or cold forming (CF). To study the effect of HI due to welding or other heat-based workshop fabrication processes, the surface of the material was dressed by laser beam at controlled speed and laser intensity. CF effects were studied by bending the specimens to a predetermined angle prior to subjecting the steel to tensile testing. Experimental results were compared with numerical simulation using ls-dyna simulation software. The generated results show acceptable agreement between experimental and numerical simulation outcomes.


2021 ◽  
Vol 1035 ◽  
pp. 410-417
Author(s):  
De Gui Liu ◽  
Fu Long Chen ◽  
Hai Bao Wu ◽  
Ji Zhen Li ◽  
Jian Fei Wang

D406A steel is a medium-carbon low-alloy steel, which has excellent comprehensive mechanical properties. It is widely used in the production of missiles and rocket barrels. In this paper, the spinning forming limit test and the intermediate heat treatment process of ultra-high-strength steel were used to explore the effect of spinning process and heat treatment on the properties of spinning parts. The research results showed that the reduction amount of the material made the material thinning rate approach the limit thinning rate. The final blank wall thickness was reduced from 15 mm to 3.0 mm when the cracking occurred. It was calculated that the material's power spinning limit thinning rate was 80%. The ferrite matrix after spinning showed a streamline distribution characteristic perpendicular to the thinning direction, and the precipitated carbides were uniformly distributed on the surface of the matrix, which had the characteristics of deformation and extension along the streamline. After the heat treatment, the structure of the spinning parts changed continuously. When the structure was quenched and tempered, the martensitic structure can be obtained, and the tempered martensitic structure was smaller. Furthermore a test piece for ultra-high-strength steel spinning technology has been developed, and the solutions discussed for flanging defects in the actual spinning process, and test data for the actual production of ultra-high-strength steel spinning parts accumulated.


2012 ◽  
Vol 726 ◽  
pp. 110-117 ◽  
Author(s):  
Jarosław Galkiewicz

The detailed analysis of the tensile properties of the 1/2Y welded joint made of ultra-high strength steel S 960 QC was carried out. The analysis concerned various parts of welded joint and has been carried out with the help of both experiment and numerical simulation. Results were compared with the data measured using the ARAMIS system. The purpose of the analysis was to provide the constitutive relations for detailed analysis of the welded joint by finite element method.


2014 ◽  
Vol 1063 ◽  
pp. 297-300 ◽  
Author(s):  
Ya Xu ◽  
Chao Wang ◽  
Yi Lin Wang ◽  
Yi Sheng Zhang

Due to the deep drawing structure and box-shaped design in hot stamping, the typical ultra-high strength steel B-pillar was reasonably optimized to eliminate wrinkles in big end, assure the blank in the right position and meet the requirements of assembly. The finite element inverse algorithm was used to reverse the original blank of optimized part and production experiments of full-scaled part were performed to analyze the effect of optimized blank on the forming process.


2012 ◽  
Vol 482-484 ◽  
pp. 2430-2437 ◽  
Author(s):  
De Sen Yang ◽  
Wen Liu ◽  
Guang Jun Hu ◽  
Jie Zhou ◽  
Zhu Su

To research the key factor that affect on material characteristic of hot stamping, this paper studied the spring-back problem of hot forming of the ultra-high strength steel, "U" shaped part by using the combination method of numerical simulation and experimental verification. By obtaining the data of BR1500 HS isothermal tensile test, it established a "U" shaped part of thermal-mechanical coupled model which is based on ABAQUS to analyze the influences of forming speed and holding time on the forming properties. Simulation analysis showed that: When the forming speed of sheet metal is faster than 35mm/s, the rebound value is small, and further increase has no significant effect on the rebound; after holding 6s, the temperature quenching would become stable. The results verify the reliability of the finite element model. Also the study has provided a theoretical basis for determining the process parameters of the type of steel hot forming.


Sign in / Sign up

Export Citation Format

Share Document