Comparison of the Initial Repeated Bond Strength among Three Orthodontic Bonding Systems

2014 ◽  
Vol 1025-1026 ◽  
pp. 385-390
Author(s):  
Niwat Anuwongnukroh ◽  
Surachai Dechkunakorn ◽  
Jirawat Arunakol ◽  
Wassana Wichai

One of the problems that often occurred during orthodontic treatment is bracket failure. This is usually the result either of the patient’s accidentally, applying inappropriate forces to the bracket or of a poor bonding technique. Thus, a significant number of teeth have to be rebonded in an orthodontic practice. Objective: The aim of this study was to evaluate the in vitro initial repeated shear bond strength of the three adhesive systems at two and five minutes after placement of a bracket. Materials and Methods: The three bonding agent adhesives are System1+, Rely-a-bond, Unite. Two hundred and forty human premolar teeth were divided into two groups, a control and an experimental group. Each group was further divided into three subgroups for bonding brackets with the three different adhesives. Only the teeth in the experimental group were sequentially bonded and debonded two times with the same adhesive. The teeth in control and experimental groups were tested for shear bond strength (at two and five minutes after the bracket was bonded) with an Instron testing machine. Results: The studies were found that : (1) there were differences between the shear bond strength of each adhesive in the control and experimental group. Unite had the highest shear bond strength followed by Rely-a-bond and System1+ at two minutes and five minutes, (2) the experiment group ( rebonded brackets) had higher shear bond strength than control group and Unite had in significant difference (p<0.05) of initial repeated bond strength with System1+ and Rely-a-bond at two minutes and five minutes and (3) there were mostly significant difference (p<0.05) between repeated shear bond strength at two minutes and repeated shear bond strength at five minutes. Conclusion: There were significant difference of the initial repeated shear bond strength of each adhesive. The orthodontists should be aware of applying force for tooth movement into the repeated bonding brackets.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Andreas Hellak ◽  
Jennifer Ebeling ◽  
Michael Schauseil ◽  
Steffen Stein ◽  
Matthias Roggendorf ◽  
...  

Objective.The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond™and Scotchbond™) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™.Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces,n=30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120™testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P≤0.05).Results. Significant differences in SBS and ARI were found between the control group and experimental groups.Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.


Author(s):  
Mohammad Moslem Imani ◽  
Farzaneh Aghajani ◽  
Nafiseh Momeni ◽  
Mohammad Sadegh Ahmad Akhoundi

Objectives: In clinical conditions, orthodontic brackets are exposed to periodic stresses mainly induced by mastication and intraoral forces. The objective of the present study was to evaluate the effects of cyclic loading to simulate masticatory forces on shear bond strength (SBS) of metal brackets bonded to teeth using self-etch and total-etch bonding systems. Materials and Methods: Eighty-four caries- and crack-free bovine mandibular incisors were selected and randomly assigned to two groups based on the type of bonding system. After bonding, all samples were thermocycled (500 cycles) followed by cyclic loading of the half of the specimens in each group by applying 40 N load with 2 Hz frequency for 10,000 cycles. The SBS was measured using a universal testing machine. The adhesive remnant index (ARI) score was calculated subsequently. Data were analyzed using Kolmogorov-Smirnov test, two-way ANOVA and Mann-Whitney test. Results: The SBS was 10.09±3.78 MPa and 14.44±6.06 MPa for self-etch and total-etch bonding systems in cyclic loading group, respectively. The SBS was 9.43±5.3 MPa and 11.31±5.42 MPa in self-etch and total-etch groups without cyclic loading, respectively. Cyclic loading did not cause any significant difference in SBS (P>0.05). The ARI scores of the groups were significantly different (P<0.05). Conclusions: The present results demonstrated that low masticatory forces at 10,000 cycles did not have a significant impact on bracket-adhesive SBS; however, they significantly changed the ARI score. Even though the total-etch bonding system yielded higher SBS than the self-etch system, the performance of both was clinically acceptable.


2018 ◽  
Vol 7 (2) ◽  
pp. 28-31
Author(s):  
Varunjeet Chaudhary ◽  
Sanad Singh Solanki ◽  
Varsha Yadav ◽  
Seema Lahoti

Objective: To evaluate the shear bond strength of stainless steel brackets bonded with fluoride-releasing composite resins, comparing effect of adhesion booster and conventional primer.Materials & Method: Sixty extracted premolars were subjected to bracket bonding with fluoride-releasing composite resin; which were bonded by randomly divided into two groups of bonding agents: Group 1- conventional primer as control group, Group 2- adhesion booster. After bonding, the samples were thermocycled (500 cycles) at 5ºC and 55ºC temperatures. After 48 hours they were subjected to shear bond strength testing in occluso-gingival direction, using an MTS 810 Universal Testing Machine with load speed of 0.5 mm/min.Result: Mean shear bond strength was significantly more in samples bonded with adhesion booster (14.792±3.805 Mpa) as compared to conventional primers (11.327±4.047 Mpa). There was statistically significant difference in shear bond strength between the groups (p=0.001).Conclusion: The use of the adhesion booster significantly increased the bond strength of bracket bonded with fluoride-releasing composite.


2021 ◽  
Vol 3 (1) ◽  
pp. 31-36
Author(s):  
Huda Alaa Aldeen Sadeq ◽  
Israa Mohammed Hummudi

Back ground: Reduction of a durable bond to acrylic denture base is the main problem associated with soft liner materials. Purpose: Evaluation of the influence of addition of Ag-Zn Zeolite on shear bond strength of silicon cold cure   soft liner. Approach: thirty specimens   of silicon cold cure  soft liner were constructed for shear bond- strength test and divided into three groups: Control groups: 10 specimens without incorporation of Ag-Zn Zeolite, Experimental group: 10 specimens with 0.5% by weight of Ag-Zn Zeolite Experimental Group: 10 specimens with 0.75 %by weight of Ag-Zn Zeolite Plastic pattern of acrylic block with dimensions (75 mm length  x 25mm width x 5mm depth )was fabricated and evaluated by Instron testing machine. Results: Least significant difference of (0.75%) of Ag-Zn zeolite group was significantly different compared with the experimental group of (0.5% and control group) at p<0.05. Conclusion: The incorporation of 0.5%, 0.75% by weight into silicon cold cure soft liner had significant effect and causes improvement in shear bond strength.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Menna Ahmed ElGendy ◽  
Ihab Mosleh ◽  
Hanaa Zaghloul

Objective: the purpose of the study was to evaluate the micro-shear bond strength of different cements to translucent zirconia before and after thermocycling aging. Material and methods: Twelve translucent zirconia ceramic discs were used in the study. Specimens were sandblasted using 50 ‎μm aluminum oxide (Al2O3) particles. The specimens were divided into three groups (n = 4) according to the cement type: Panavia resin cement (control group), resin modified glass ionomer (RMGI), and Activa bioactive cement. Each group was further sub-divided into two equal subgroups (n = 2) according to whether the specimens were subjected to thermocycling or not. Thermocycling was performed in distilled water at 5000 cycles between 5 oC - 55 oC. The micro-shear bond strength test (μSBS) was measured using universal testing machine. Kruskal-Wallis test was used to compare between the three cements. Dunn’s test was used for pair-wise comparisons when Kruskal-Wallis test is significant. Mann-Whitney U test was used to compare between micro-shear bond strength before and after thermocycling P ≤ 0.05. Results: In non-aged subgroups, there was no significant difference between Panavia and Activa; both showed significantly the highest mean μSBS values (22.9 MPa, 31.3 MPa respectively). While, RMGI showed the lowest μSBS values (4.7 MPa).  In thermocycled subgroups, Panavia showed significantly the highest mean μSBS values (32.2 MPa). There was no significant difference between RMGI and Activa; both showed the lowest significant mean μSBS values (3.2 MPa and 8.7 MPa respectively). Conclusions: RMGI and Activa couldn’t be considered long-term reliable materials for cementing zirconia. However, Panavia provided the most durable bond to zirconia.KEYWORDSBioactive cement; Micro-shear bond strength; Resin cement; Translucent zirconia.


2014 ◽  
Vol 15 (6) ◽  
pp. 688-692 ◽  
Author(s):  
Sukumaran Anil ◽  
Farouk Ahmed Hussein ◽  
Mohammed Ibrahim Hashem ◽  
Elna P Chalisserry

ABSTRACT Objective The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Subjects and methods Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. Results No statistically significant difference was found in bond strengths’ values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. Conclusion The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength. How to cite this article Hussein FA, Hashem MI, Chalisserry EP, Anil S. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J Contemp Dent Pract 2014;15(6):688-692.


2016 ◽  
Vol 10 (01) ◽  
pp. 109-115 ◽  
Author(s):  
Mahendran Kavitha ◽  
Sharmila Selvaraj ◽  
Ambica Khetarpal ◽  
Aruna Raj ◽  
Shakunthala Pasupathy ◽  
...  

ABSTRACT Objective: The aim of this study was to investigate the neutralizer effect of antioxidant agents on the bond strength of bleached enamel. Materials and Methods: Sixty enamel slabs were prepared from 60 freshly extracted maxillary central incisors and were divided into six groups. The negative control group received no bleaching treatment and the other groups were bleached with 35% carbamide peroxide (Opalescence Quick; Ultradent, South Jordan, USA). In Group II, composite was built immediately after bleaching and cured without any antioxidants. In Group III, bleached specimens received composite build ups delayed by 1 week. In Groups IV, V, and VI bleached specimens received applications of superoxide dismutase (SOD), sodium ascorbate (SA), and tocopherol solutions, respectively, for 10 min. Following composite bonding, the micro shear bond strength (μSBS) was measured at a speed of 1 mm/min in universal testing machine. Statistical Analysis Used: The μSBS values of all the groups were analyzed using the analysis of variance followed by Tukey honestly significant difference post-hoc test. Results: Bonding of composites to unbleached group (Group I) exhibited the highest mean SBS values and among the antioxidant-treated groups, the highest SBS values were seen with SOD (Group IV) treated samples (23.0040 ± 4.30565 MPa). Conclusions: Application of SA, alpha-tocopherol, and SOD can effectively reverse the bond strength with bleached enamel. SOD gave a comparatively more promising reversal of bond strength than SA and alpha-tocopherol, and deserves further studies.


2021 ◽  
Vol 58 (1) ◽  
pp. eUJ3657
Author(s):  
Germano Brandão ◽  
◽  
Liliana Ávila Maltagliati ◽  
Ana Carla Raphaelli Nahás-Scocate ◽  
Murilo Matias ◽  
...  

The objective of this in vitro study was to assess and compare the shear bond strength of conventional and modified orthodontic tubes bonded to the surface of dry and saliva-contaminated enamel. The sample consisted of 40 human teeth, which were randomly divided into four groups according to attachment base and presence or absence of saliva contamination as follows: Group CB, conventional orthodontic tubes without salivary contamination; Group CB-S, conventional orthodontic tubes with salivary contamination; Groups BM, orthodontic tubes modified by welding a metal mesh to their base without salivary contamination; and Group BM-S, modified orthodontic tubes with salivary contamination. Shear bond strength test was performed in a universal testing machine and analysis of the adhesive remnant index (ARI) by optical microscopy. Two-way ANOVA was used, followed by Tukey’s test at a statistical significance level of 5%. The ARI results were analysed descriptively. There was statistically significant difference between the groups regarding the shear bond strength values, with conventional tubes presenting significantly higher values (P < 0.05). In addition, the presence of salivary contamination interfered negatively with the behaviour of conventional tubes only (P < 0.05). Shear bond strength was not improved by increasing the area of the orthodontic tubes. Moreover, salivary contamination influenced negatively the SBS values, but only when conventional tubes were used.


BDJ Open ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Yasser R. Souror ◽  
Tayseer Maaly ◽  
Mohammed Sameer Khawandanah

Abstract To evaluate a fixed-space maintainer made of light-cure acrylic resin (LCAR) for its flexural and shear bond strength using different bonding systems to the enamel. 45 extracted primary teeth were selected. They were randomly divided into three equal groups (n = 15) along with the type of adhesive system (Tetric Flow, Transbond XT, and Fuji Ortho LC) used for bonding (LCAR) to the tooth surface. Surfaces were treated; LCAR was attached to the treated surfaces using a split Teflon mold. For flexural strength testing, ten bars of LCAR were made using another Teflon-split mold. Shear bond strength and mean flexural strength values were evaluated by a universal testing machine. The highest values of bond strength were recorded for Transbond XT, followed by Tetric Flow, while the lowest values were for Fuji Ortho LC. Various groups had a significant difference as investigated by ANOVA. ARI scores showed no significant difference in debond sites. Mean value and standard deviation of flexural strength for LCAR were 82.83  ± 5.2. LCAR has superior mechanical properties and could be an alternative to currently-in-use space maintainer though in vivo and in vitro trials are needed to progress the ultimate design of LCAR.


2021 ◽  
Author(s):  
Ladan Ranjbar Omrani ◽  
Saba Tohidkhah ◽  
Elham Ahmadi ◽  
Mahdi Abbasi ◽  
Reza Morvaridi Farimani

Abstract Background: The aim of the current study was to evaluate and compare the influence of Dycal, Lime-lite, Theracal LC, Biodentine, Resin-modified glass ionomer cement (RMGIC), and Activa Bioactive as the pulp capping material on the shear bond strength of resin composite to dentin.Methods: A total of 70 extracted caries-free molars were randomly assigned to seven groups. Six test groups were covered with various protective liners: Dycal (GD), Theracal LC (GT), lime-lite (GL), Activa Bioactive (GA), Biodentine (GB), RMGIC (GR). The control group (GC)received no liner pretreatment. Each sample was bonded to resin composite using the total-etch tetric N bond adhesive. The samples were then tested for shear bond strength using the universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The data were analyzed using the one-way ANOVA test followed by the Tamhane post-hoc test for pairwise comparisons of the groupsResults: Independent of the type of the applied liner, all groups exhibited inferior SBS to dentine compared to the control group. GT and GR showed significantly higher shear bond strength than GB and GD, which showed the lowest shear bond strength. GL and GA also had significantly lower SBS results than GT. The mode of fracture was predominantly cohesive in GD, GB, and GT and adhesive in GA.Conclusion: This present study concludes that the bond strength of resin-composite to dentine can be affected differently using various types of liners.


Sign in / Sign up

Export Citation Format

Share Document