Influence of Silver-Zinc Zeolite Incorporation on Shear Bond Strength of Silicon Cold Cure Soft Liner

2021 ◽  
Vol 3 (1) ◽  
pp. 31-36
Author(s):  
Huda Alaa Aldeen Sadeq ◽  
Israa Mohammed Hummudi

Back ground: Reduction of a durable bond to acrylic denture base is the main problem associated with soft liner materials. Purpose: Evaluation of the influence of addition of Ag-Zn Zeolite on shear bond strength of silicon cold cure   soft liner. Approach: thirty specimens   of silicon cold cure  soft liner were constructed for shear bond- strength test and divided into three groups: Control groups: 10 specimens without incorporation of Ag-Zn Zeolite, Experimental group: 10 specimens with 0.5% by weight of Ag-Zn Zeolite Experimental Group: 10 specimens with 0.75 %by weight of Ag-Zn Zeolite Plastic pattern of acrylic block with dimensions (75 mm length  x 25mm width x 5mm depth )was fabricated and evaluated by Instron testing machine. Results: Least significant difference of (0.75%) of Ag-Zn zeolite group was significantly different compared with the experimental group of (0.5% and control group) at p<0.05. Conclusion: The incorporation of 0.5%, 0.75% by weight into silicon cold cure soft liner had significant effect and causes improvement in shear bond strength.

2014 ◽  
Vol 1025-1026 ◽  
pp. 385-390
Author(s):  
Niwat Anuwongnukroh ◽  
Surachai Dechkunakorn ◽  
Jirawat Arunakol ◽  
Wassana Wichai

One of the problems that often occurred during orthodontic treatment is bracket failure. This is usually the result either of the patient’s accidentally, applying inappropriate forces to the bracket or of a poor bonding technique. Thus, a significant number of teeth have to be rebonded in an orthodontic practice. Objective: The aim of this study was to evaluate the in vitro initial repeated shear bond strength of the three adhesive systems at two and five minutes after placement of a bracket. Materials and Methods: The three bonding agent adhesives are System1+, Rely-a-bond, Unite. Two hundred and forty human premolar teeth were divided into two groups, a control and an experimental group. Each group was further divided into three subgroups for bonding brackets with the three different adhesives. Only the teeth in the experimental group were sequentially bonded and debonded two times with the same adhesive. The teeth in control and experimental groups were tested for shear bond strength (at two and five minutes after the bracket was bonded) with an Instron testing machine. Results: The studies were found that : (1) there were differences between the shear bond strength of each adhesive in the control and experimental group. Unite had the highest shear bond strength followed by Rely-a-bond and System1+ at two minutes and five minutes, (2) the experiment group ( rebonded brackets) had higher shear bond strength than control group and Unite had in significant difference (p<0.05) of initial repeated bond strength with System1+ and Rely-a-bond at two minutes and five minutes and (3) there were mostly significant difference (p<0.05) between repeated shear bond strength at two minutes and repeated shear bond strength at five minutes. Conclusion: There were significant difference of the initial repeated shear bond strength of each adhesive. The orthodontists should be aware of applying force for tooth movement into the repeated bonding brackets.


2014 ◽  
Vol 15 (6) ◽  
pp. 688-692 ◽  
Author(s):  
Sukumaran Anil ◽  
Farouk Ahmed Hussein ◽  
Mohammed Ibrahim Hashem ◽  
Elna P Chalisserry

ABSTRACT Objective The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Subjects and methods Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. Results No statistically significant difference was found in bond strengths’ values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. Conclusion The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength. How to cite this article Hussein FA, Hashem MI, Chalisserry EP, Anil S. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J Contemp Dent Pract 2014;15(6):688-692.


2016 ◽  
Vol 10 (01) ◽  
pp. 109-115 ◽  
Author(s):  
Mahendran Kavitha ◽  
Sharmila Selvaraj ◽  
Ambica Khetarpal ◽  
Aruna Raj ◽  
Shakunthala Pasupathy ◽  
...  

ABSTRACT Objective: The aim of this study was to investigate the neutralizer effect of antioxidant agents on the bond strength of bleached enamel. Materials and Methods: Sixty enamel slabs were prepared from 60 freshly extracted maxillary central incisors and were divided into six groups. The negative control group received no bleaching treatment and the other groups were bleached with 35% carbamide peroxide (Opalescence Quick; Ultradent, South Jordan, USA). In Group II, composite was built immediately after bleaching and cured without any antioxidants. In Group III, bleached specimens received composite build ups delayed by 1 week. In Groups IV, V, and VI bleached specimens received applications of superoxide dismutase (SOD), sodium ascorbate (SA), and tocopherol solutions, respectively, for 10 min. Following composite bonding, the micro shear bond strength (μSBS) was measured at a speed of 1 mm/min in universal testing machine. Statistical Analysis Used: The μSBS values of all the groups were analyzed using the analysis of variance followed by Tukey honestly significant difference post-hoc test. Results: Bonding of composites to unbleached group (Group I) exhibited the highest mean SBS values and among the antioxidant-treated groups, the highest SBS values were seen with SOD (Group IV) treated samples (23.0040 ± 4.30565 MPa). Conclusions: Application of SA, alpha-tocopherol, and SOD can effectively reverse the bond strength with bleached enamel. SOD gave a comparatively more promising reversal of bond strength than SA and alpha-tocopherol, and deserves further studies.


2021 ◽  
Vol 15 (6) ◽  
pp. 1246-1248
Author(s):  
H. Asghar ◽  
M. Rasheed ◽  
H. Khawaja ◽  
H. N. Naseem ◽  
Z. Arooj ◽  
...  

Aim: To evaluate shear bond strength of silorane based composite samples repaired with silorane composite with application of silane coupling agent and adhesive bond of silorane before and after thermal cycling. Study design: Experimental study Place and duration of study: Science of Dental Materials Department, de’Montmorency College of Dentistry Lahore from 1st January 2014 to 31st October 2014. Methodology: Sixty composite specimens equally divided into control and experimental groups. Control group was further prepared for repair procedure after polymerization without thermal cycling while experimental group was given with 5000 thermal cycles between temperature range of 5-55oC, dwell time of 20 seconds) before testing, all samples were surface roughened with 400 grit silicon carbide strip, followed by application of silorane coupling agent and adhesive bond of silorane over the substrate and cured for 20 seconds. Repair silane based composite was applied on all substrate silorane composite samples and polymerized, before testing samples were left in distilled water (24 hour at 37oC) and tested with universal testing machine (crosshead speed 0.5 mm/min) until fracture. Results: There is 12 (20%) adhesive, mixed 2 (3.3%) and cohesive is 46 (76.7%). The thermal cycling has no effect on bonding interface in experimental group on strength at bonding interface. Conclusion: Silorane based composite as repair composite gave better strength with silorane based composite and can be used for repair options. Keywords: Shear bond strength, Silorane based composite, Silorane adhesive bond


2020 ◽  
Vol 20 (9) ◽  
pp. 5771-5774
Author(s):  
Hyeon Kang ◽  
Min-Kyung Ji ◽  
Hoon-Sung Cho ◽  
Sang-Won Park ◽  
Kwi-Dug Yun ◽  
...  

The purpose of this study was to examine the effect of plasma treatment by treating the surface of Co–Cr alloy, Ti–6Al–4V alloy, and CP–Ti alloy as a material for denture metal frameworks with non-thermal atmospheric pressure plasma (NTAPP) and measuring their shear bond strength (SBS) with a heat-cured resin. 20 specimens were prepared for each of Co–Cr, Ti–6Al–4V, and CP–Ti alloys. Each metal alloy group was divided into the following subgroups depending on NTAPP treatment: C (Co–Cr alloy without plasma), T (CP–Ti without plasma), A (Ti–6Al–4V alloy without plasma), CP (Co–Cr alloy with plasma), TP (CP–Ti with plasma) and AP (Ti–6Al–4V alloy with plasma). Specimens were treated with a metal conditioner and bonded to a denture base resin. SBS was measured using a universal testing machine. All data obtained were statistically analyzed using two-way analysis of variance (ANOVA), Tukey’s honestly significant difference (HSD) test, and independent t-test. The mean values (SD) of SBS (MPa) were: 10.31 (1.19) for C group; 12.43 (0.98) for T group; 13.75 (2.02) for A group; 13.53 (1.61) for CP group; 16.87 (1.55) for TP group; 17.46 (1.65) for AP group. The SBS of the AP group was the highest while that of the C group was the lowest. SBS of specimen treated with NTAPP was significantly increased regardless of metal alloy types (p < 0.001). Within the limitations of this study, NTAPP can increases the SBS of Co–Cr alloy, CP–Ti alloy, and Ti–6Al–4V alloy with a denture base resin.


2017 ◽  
Vol 41 (4) ◽  
pp. 280-283 ◽  
Author(s):  
Pallavi Hasija ◽  
Vinod Sachdev ◽  
Shivani Mathur ◽  
Rishi Rath

Objective: The aim of this study was to compare the effect of different deproteinizing agents on shear bond strength of composite to primary teeth enamel. Study Design: Forty sound primary molars divided in 4 groups of 10 teeth each. In control group 1, enamel was etched for 60 seconds with 37% phosphoric acid and rinsed with water. Group 2: after acid etching deproteinizing agent 5 % sodium hypochlorite was applied for 60 seconds and rinsed. Group 3: after acid etching deproteinizing agent papain gel was applied for 60 seconds and rinsed. Group 4: after acid etching deproteinizing agent bromelain gel applied for 60 seconds and rinsed. Following this, bonding agent was applied to treated enamel surface and composite resin disc were build. Samples were then tested for shear bond strength using Universal Testing Machine. Results: Mean SBS was highest for group 4 and lowest for group 1. No statistically significant difference (p value &gt;0.05) was found between all the four groups. Conclusion: Among deproteinizing agents, deproteinization when carried out with bromelain gel and sodium hypochlorite showed effective bond strength as compared to papain.


2021 ◽  
Vol 10 (13) ◽  
pp. e34101320132
Author(s):  
Luciana de Vasconcelos Leão ◽  
Adriana Oliveira ◽  
Jefferson Chaves Moreira ◽  
Luiz Renato Paranhos ◽  
Sigmar de Mello Rode ◽  
...  

This research aimed to assess the effect of aluminum oxide sandblasting and discs on the bond strength of metal brackets rebonded on artificially eroded enamel. Fifty-four bovine incisors were divided into groups: Control (Artificial Saliva), AlOx (Aluminum oxide sandblasting), and SL (Aluminum oxide discs). They had their enamel surface flattened with Al2O3 discs and a metallographic polisher, then Knoop microhardness was assessed. AlOx and SL specimens were eroded with Coca-Cola™ for 1 minute, 3 times a day for 7 days. Metal brackets were bonded to the tooth. Shear strength was measured by an EMIC universal testing machine (0.5 mm/min). The Adhesive Remnant Index (ARI) was performed after shearing through magnifying glass (10X). Kolmogorov-Smirnov, Levene, homoscedasticity and ANOVA tests were applied to assess microhardness and shear strength (p=0.163). All groups presented shear bond strength with no significant differences. The ARI showed statistically significant difference between the groups. The prevalence for the control group was ARI 3. However for AlOx and SL, ARI 1 and 2 prevailed. The aluminum oxide sandblasting and aluminum oxide discs did not positively increase the bond strength of brackets when bonded to artificially eroded enamel. The ARI indicated that eroded teeth present higher resin adhesion to enamel.


2018 ◽  
Vol 7 (2) ◽  
pp. 28-31
Author(s):  
Varunjeet Chaudhary ◽  
Sanad Singh Solanki ◽  
Varsha Yadav ◽  
Seema Lahoti

Objective: To evaluate the shear bond strength of stainless steel brackets bonded with fluoride-releasing composite resins, comparing effect of adhesion booster and conventional primer.Materials & Method: Sixty extracted premolars were subjected to bracket bonding with fluoride-releasing composite resin; which were bonded by randomly divided into two groups of bonding agents: Group 1- conventional primer as control group, Group 2- adhesion booster. After bonding, the samples were thermocycled (500 cycles) at 5ºC and 55ºC temperatures. After 48 hours they were subjected to shear bond strength testing in occluso-gingival direction, using an MTS 810 Universal Testing Machine with load speed of 0.5 mm/min.Result: Mean shear bond strength was significantly more in samples bonded with adhesion booster (14.792±3.805 Mpa) as compared to conventional primers (11.327±4.047 Mpa). There was statistically significant difference in shear bond strength between the groups (p=0.001).Conclusion: The use of the adhesion booster significantly increased the bond strength of bracket bonded with fluoride-releasing composite.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zahra A. AlZaher ◽  
Danah F. Almaskin ◽  
Masoumah S. Qaw ◽  
Tahani H. Abu Showmi ◽  
Reem Abualsaud ◽  
...  

Background. Detachment of acrylic teeth from denture base material is a common complication in dentistry which accounts for 26–30% of repair cases. This study aimed to evaluate the effect of alumina-blasting, silane coupling agent, and thermal cycling on the shear bond strength of repaired teeth to denture base. Materials and Methods. Specimens (140) of repaired teeth to denture bases were fabricated and divided into 14 groups: 7 groups before thermal cycling and 7 groups after thermal cycling (n = 10). The groups were divided according to surface treatment into no treatment (control), treatment of the base (B), the tooth (T), or both (BT). Each group was further subdivided according to the surface treatment method into alumina-blasting or alumina-blasting and silane coupling agent. After treatment, acrylic discs and teeth were fixed in a jig, and the repair procedure was done. Half the specimens were thermally cycled. Shear bond strength was measured using a universal testing machine. ANOVA and Tukey HSD tests were performed at α = 0.05. Results. Surface treatment significantly improved the bond strength compared to the control group P < 0.001 . Comparing surface treatments, alumina-blasting with silane coupling agent treatment resulted in significantly higher strength compared to alumina-blasting alone P < 0.001 . The BT group treated with alumina-blasting and silane coupling agent showed the highest significant shear bond strength (23.91 ± 0.96 MPa) P < 0.001 . Significant drop in strength value was observed in all groups after thermal cycling P < 0.004 except the BT group treated with alumina-blasting P = 0.096 . Conclusion. Surface treatment using alumina-blasting with silane coupling agent for denture base and tooth increased repair strength.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Menna Ahmed ElGendy ◽  
Ihab Mosleh ◽  
Hanaa Zaghloul

Objective: the purpose of the study was to evaluate the micro-shear bond strength of different cements to translucent zirconia before and after thermocycling aging. Material and methods: Twelve translucent zirconia ceramic discs were used in the study. Specimens were sandblasted using 50 ‎μm aluminum oxide (Al2O3) particles. The specimens were divided into three groups (n = 4) according to the cement type: Panavia resin cement (control group), resin modified glass ionomer (RMGI), and Activa bioactive cement. Each group was further sub-divided into two equal subgroups (n = 2) according to whether the specimens were subjected to thermocycling or not. Thermocycling was performed in distilled water at 5000 cycles between 5 oC - 55 oC. The micro-shear bond strength test (μSBS) was measured using universal testing machine. Kruskal-Wallis test was used to compare between the three cements. Dunn’s test was used for pair-wise comparisons when Kruskal-Wallis test is significant. Mann-Whitney U test was used to compare between micro-shear bond strength before and after thermocycling P ≤ 0.05. Results: In non-aged subgroups, there was no significant difference between Panavia and Activa; both showed significantly the highest mean μSBS values (22.9 MPa, 31.3 MPa respectively). While, RMGI showed the lowest μSBS values (4.7 MPa).  In thermocycled subgroups, Panavia showed significantly the highest mean μSBS values (32.2 MPa). There was no significant difference between RMGI and Activa; both showed the lowest significant mean μSBS values (3.2 MPa and 8.7 MPa respectively). Conclusions: RMGI and Activa couldn’t be considered long-term reliable materials for cementing zirconia. However, Panavia provided the most durable bond to zirconia.KEYWORDSBioactive cement; Micro-shear bond strength; Resin cement; Translucent zirconia.


Sign in / Sign up

Export Citation Format

Share Document