The Study of Melamine Modified by Imidazolium Based Ionic Liquid [BMIM]PF6 on the Flame Retardancy of Rigid Polyurethane Foam

2014 ◽  
Vol 1030-1032 ◽  
pp. 241-245 ◽  
Author(s):  
Yan Wei Li

In this paper, the effect of C3H6N6modified by imidazolium based Ionic Liquid 1-butyl-methylimidazolium hexafluorophosphate ([BMIM]PF6) on polyurethane rigid foam flame retardant properties was conducted.The results show that the flame retardant properties of C3H6N6 modified with Ionic Liquid significantly increased and the LOI increased form 22.3 to 24.5. In the modification process, the ionic liquid mass have a very noticeable effect to the flame retardant property and when [BMIM]PF6 and C3H6N6 in quality was 4:6, Fire-retardant effect was best.Compared with the prior to the modification, C3H6N6 modified can increase effective Flame resistance of materials, horizontal burning speed from 67.6mm/min down to 33.4mm/min.Thermal degradation data show that C3H6N6 modified could improve initial decomposition temperature and reminder yield of rigid polyurethane foam,and then heat release reduced, the decomposition controlled,thermal stability increased.

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Lin Liu ◽  
Rui Lv

AbstractA DOPO (9,10-dihydro-9-oxa-10-phosphaphen-anthrene-10-oxide)-based halogen-free flame retardant (ODOPM-CYC) was synthesized and incorporated in rigid polyurethane foam (RPUF). The structure of ODOPM-CYC was characterized by Fourier transform infrared spectra (FTIR), 1H NMR and 31P NMR. The effects of ODOPM-CYC on the flame resistance, mechanical performances, thermal properties and cell structure of RPUF were also investigated. The results showed that the incorporation of ODOPM-CYC strikingly enhanced flame retardant properties of RPUF. The flame retarded RPUF acquired a limiting oxygen index (LOI) value of 26% and achieved UL-94 V-0 rating with the phosphorus content of 3 wt%. The smoke production rate (SPR) also showed an obvious decrease and total smoke release (TSR) was 39.8% lower than that of neat RPUF. Besides, the results demonstrated that the incorporation of ODOPM-CYC provided RPUF better thermal stability but did not show any obvious influence on its thermal conductivity.


2007 ◽  
Vol 104 (5) ◽  
pp. 3347-3355 ◽  
Author(s):  
Xiang-Cheng Bian ◽  
Jian-Hua Tang ◽  
Zhong-Ming Li ◽  
Zhong-Yuan Lu ◽  
Ai Lu

2009 ◽  
Vol 46 (7) ◽  
pp. 704-712 ◽  
Author(s):  
M. Thirumal ◽  
Dipak Khastgir ◽  
Nikhil K Singha ◽  
B. S. Manjunath ◽  
Y. P. Naik

2016 ◽  
Vol 45 (6) ◽  
pp. 450-455 ◽  
Author(s):  
Lizhu Liu ◽  
Weiliang Li ◽  
Weiwei Cui ◽  
Xiaorui Zhang ◽  
Weng Ling

Purpose In this paper, boric acid was loaded on the surface of expandable graphite (EG), polyvinyl alcohol (PVA) and silane coupling agent (KH550) served as a bridge. The purpose of this study was to improve the flame retardant properties of semi-rigid polyurethane, meanwhile, the mechanical properties of the foam got ameliorated. Design/methodology/approach PVA was dissolved in hot water. EG was added to this solution. After stirring for 0.5 h at 85°C in ultrasonic agitation, the system was put at room temperature to cool. The silane coupling agent KH550 was added dropwise into the solution system, stirring to fully hydrolyze. Boric acid was added into the system, placing it in an oven at 90°C to dry after filtration. Changing of flame retardant properties and mechanical properties of semi-rigid polyurethane adding modified EG were characterized. Findings The flame retardant performance of the foam with EG has been improved, whereas the tensile strength decreased with an increase in the content of EG. After adding modified EG, compared to semi-rigid polyurethane with EG, flame retardant performance and tensile strength of the foam improved. Research limitations/implications In the study reported here, the surface of EG was modified by boric acid. The modified EG was added into semi-rigid polyurethane foam. The flame retardant performance and tensile strength of the foam after adding modified EG were discussed. Results of this research could benefit in-depth study of the influence of adding modified EG to semi-rigid polyurethane. The study could promote the application of flame-retardant polyurethane foam. Originality/value The flame retardant performance and tensile strength of the semi-rigid polyurethane were improved by adding modified EG. The effects of modified EG on the flame retardant performance and tensile strength of semi-rigid polyurethane were discussed in detail.


2020 ◽  
Vol 34 (2) ◽  
pp. 7-13
Author(s):  
Hyeong-Jun Kim ◽  
Jewon Park ◽  
Hyein Na ◽  
Hyung Mi Lim ◽  
Gabin Chang

In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.


2017 ◽  
Vol 44 (1) ◽  
pp. 1-8
Author(s):  
K. Lehmann ◽  
A. Nawracala

The following article discusses the use of novel compounds from the Tegosil series which are intended to significantly increase the thermal conductivity of HCR- and even LSR-based silicone elastomers or to provide a simple way of improving their flame retardant properties by adding these compounds. Heat transfer characteristics from hot disc testing are presented and the reduced burn time in the UL 94 test demonstrates the improved flame resistance of the resulting elastomer formulations.


Sign in / Sign up

Export Citation Format

Share Document