Factors Analysis about the Dam-Break of the Uranium Tailings

2014 ◽  
Vol 1051 ◽  
pp. 495-499
Author(s):  
Fang Ke Lv ◽  
Yong Liu ◽  
Zan Guo

The uranium tailings is a typical major hazard sources because of its specificity, which could cause serious casualties, property damage and environment pollution in the event of an accident, and thus calls for the attention of everyone. In this paper, we will connect with the practical situation of the uranium tailings, identifying the factors of the dam, such as stability failure of dam slope, overtopping, structure damage, seepage damage and so on. To analyze the related factors and put forward countermeasures based on the analyzed results to control the harmful factors, this will lay the foundation for improving the safety monitoring and security management of uranium tailings impoundment.

2013 ◽  
Vol 807-809 ◽  
pp. 628-631
Author(s):  
Xiao Yong Peng ◽  
Xin Zhang ◽  
Shuai Huang ◽  
Xu Sheng Chai ◽  
Lan Xia Guo

with a flat ground uranium tailings impoundment as the object of the paper, CFD technology was used to study the atmospheric dynamic diffusion characteristics and the evolution of time and space distribution of radon in the uranium tailings impoundment. Results show that, within 1500m range of the leeward of uranium tailings impoundment the falling gradient of radon mass fraction improves with distance increases at the same moment, however the falling gradient flattens with the increase of time gradually; During the first 30 minutes, the radon mass fraction of tailings impoundment in the leeward direction has a larger growth gradient, then flattens out slowly, and stabilizes after 75 minutes.


2014 ◽  
Vol 30 (2) ◽  
pp. 316-321 ◽  
Author(s):  
Chris Richter ◽  
Noel E. O’Connor ◽  
Brendan Marshall ◽  
Kieran Moran

The aim of this study is to propose a novel data analysis approach, ananalysis of characterizing phases(ACP), that detects and examines phases of variance within a sample of curves utilizing the time, magnitude, and magnitude-time domains; and to compare the findings of ACP to discrete point analysis in identifying performance-related factors in vertical jumps. Twenty-five vertical jumps were analyzed. Discrete point analysis identified the initial-to-maximum rate of force development (P= .006) and the time from initial-to-maximum force (P= .047) as performance-related factors. However, due to intersubject variability in the shape of the force curves (ie, non-, uni- and bimodal nature), these variables were judged to be functionally erroneous. In contrast, ACP identified the ability to apply forces for longer (P< .038), generate higher forces (P< .027), and produce a greater rate of force development (P< .003) as performance-related factors. Analysis of characterizing phases showed advantages over discrete point analysis in identifying performance-related factors because it (i) analyses only related phases, (ii) analyses the whole data set, (iii) can identify performance-related factors that occur solely as a phase, (iv) identifies the specific phase over which differences occur, and (v) analyses the time, magnitude and combined magnitude-time domains.


2011 ◽  
Vol 356-360 ◽  
pp. 1679-1683
Author(s):  
Xiao Yong Peng ◽  
Zhen Hao Liu ◽  
Lin Yao ◽  
Qing Fang Xie ◽  
Fen Wan

The influencing factors on radon emanation rate of uranium tailings storehouse, migration mechanism, theoretical research of the radon emanation and research status of radonmetry were introduced. Reasonable measurement, network, sampling time and measuring times are very necessary to the measurement of radon emanation rate of uranium tailings. Combining numerical simulation, physical experiment simulation and field test, put forward reasonable management standards for decommissioning uranium tailings.


2020 ◽  
Vol 29 ◽  
pp. 101649 ◽  
Author(s):  
Dan-chen Li ◽  
Xiang Nong ◽  
Zhang-yi Hu ◽  
Tian-wen Fang ◽  
Ting-ting Zhao ◽  
...  

2012 ◽  
Vol 253-255 ◽  
pp. 1014-1018
Author(s):  
Xiao Yong Peng ◽  
Fen Wan ◽  
Qing Fang Xie ◽  
Xin Zhang ◽  
Shuai Huang

Based on the discrete phase model (DPM), this paper studies the concentration distribution and settlement regularity of particles which sizes are 10μm and 100μm under the wind speed of 0.5, 1, 2, and 4m/s with the method of numerical simulation. The simulation results show that the particle concentration of 10μm at the downwind direction of tailing is constantly decreasing with the increase of wind speed and migration distance, and the particle concentration of 100μm is gradually increasing, as well as the local pollution also become gradually worse. As wind speed is 0.5m/s, the local concentration of 10μm particles at the beach face of uranium tailings impoundment is higher, and there is much deposition within 2000m of the downwind direction. While the dust emission rate of 100μm is less and its concentration is lower.10μm particles are taken away by the wind, and its concentration would fall rapidly with wind speed increased to 4.0m/s. The concentration of 100μm particle would increase and local pollution becomes more serious.


Heart ◽  
2012 ◽  
Vol 98 (Suppl 2) ◽  
pp. E138.2-E138
Author(s):  
Jinbo Liu ◽  
Qi Wang ◽  
Ran Ma ◽  
Qi Liu ◽  
Na Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document