Ground Granulated Blast Furnace Slag as Partial Replacement of the Binder of High Performance Concrete

2014 ◽  
Vol 1054 ◽  
pp. 90-94 ◽  
Author(s):  
Michal Ženíšek ◽  
Tomáš Vlach ◽  
Lenka Laiblová

This article deals with influence of the ground granulated blast furnace slag (GGBS) in the mixture of high performance concrete. It is a powder active addition used in concrete which is characterized certain cementitious properties. Influence of this addition was experimentally verified. In the first series, partial replacement of cement by GGBS was tested. In the second series, GGBS was added to the original reference mixture. Studied parameters were compressive strength, tensile strength and workability. The tests have shown that a partial replacement of the cement by GGBS is possible for achieving the desired workability or if we need to reduce the price of concrete.

2020 ◽  
Vol 184 ◽  
pp. 01088
Author(s):  
C Vivek Kumar ◽  
Patam Manisha ◽  
Pooja Sadula

Strength, ductility of structures differ primarily on appropriate detailing of. beam column joints need a vital role in the structural reliability of the structures given with appropriate stiffness and ultimate strength to maintain the loads transmitted from beam and column. Beam column joints defined as the reinforced concrete buildings, in which portion of columns and beams having their intersections. Although these forces greater than these are affected during earthquakes, joints are relentlessly damaged. As far as earthquake is affected, research on beam-column joint is essential. In HPC, these materials with admixtures are meticulously designated and proportioned to produce very high early, ultimate strengths and durability away from conventional concrete. The admixtures like flyash, silicafume, ground granulated blast furnace slag (GGBFS), which are combined with its strength and durability and boost its marketability as a natural friendly product. The most important purpose of the present study is to investigate the performance of high performance reinforced beam-column joints (replacement of cement with GGBFS). Ground granulated blast furnace GGBFS is employed as a partial replacement of cement with glass fibre and super plasticizer is applied to accomplish required workability. In this study, a evaluation of control specimen and specimen of beam column joint with 7.5% GGBFS and 0.3% glass fibre replacement intended as per IS 456:2000 and IS 13920:2016. Also, to ascertain the performance of beam-column joints subjected to monotonic loading for high performance concrete employing with Ground Granulated Blast Furnace Slag (GGBFS) and glass fibre.


2014 ◽  
Vol 911 ◽  
pp. 428-432
Author(s):  
Aissa Talah ◽  
F. Kharchi

This paper reports an experimental study of influence of finely ground-granulated blast-furnace slag (GGBS) used as partial replacement of Portland cement (PC) on the mechanical properties and durability of high performance concretes. The analysis of the experimental results on concrete at 17.5% content of blast furnace slag with a fineness modulus of 8500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to water absorption and migration of chloride ions. On the basis of the experiments performed, it can be concluded that the GGBS is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC).


2013 ◽  
Vol 634-638 ◽  
pp. 2716-2719
Author(s):  
Wan Shin Park ◽  
Sung Ho Cho ◽  
Song Hui Yun ◽  
Jeong Eun Kim ◽  
Do Gyeum Kim ◽  
...  

The characteristics of the compressive strength and splitting tensile strength according to replacement ratio of the blast furnace slag were found in this study. The blast furnace slag was utilizes as the concrete mix-material and then, these results were compared with the basis presented in the international standards. In this study, cylinder made of concrete with water/binder ratio 0.34 and blast furnace slag replacement rate of 10%, 30%, 50%, and 70% were prepared to measure the compressive strength and spiting tensile strength. Test results indicate that The 28 days and 91 days compressive strength is affected by blast furnace slag replacement except specimen BS30 and the splitting tensile strength in specimen BS series is slightly larger than that of OPC except specimen BS 30.


Author(s):  
Khalid Bashir Mir

In this review study the usage of three different kinds of constructional materials was discussed in detail. The three materials comprised of Ground Granulated Blast Furnace Slag, fly and polypropylene fiber. Ground Granulated Blast Furnace Slag is basically the slag derived after the quenching process of iron slag produced during the processing of iron in iron industry. Fly ash is the waste generated from the coal processing industries and is mainly used in the road constructions works. Polypropylene fiber is a synthetic fiber that has very high tensile strength and flexural strength. This fiber is also known as synthetic fiber as it is mainly used in the synthetic industry. Depending upon the results of previous studies over the usage of these materials various conclusions has been drawn which are as follows. The results of studies related to the usage of Ground Granulated Blast Furnace Slag as partial replacement of cement concluded that the most optimum usage percentage of Ground Granulated Blast Furnace Slag as partial replacement of cement was found to be between 20 percent and 30 percent and beyond this limit the strength of concrete was decreasing. The past studies related to the usage of fly ash as partial replacement of cement shoed that the most optimum usage percentage of fly ash was found to be between 15 percent to 20 percent and beyond this percentage the strength parameters of concrete such as compressive strength, flexural strength and split tensile strength starts declining up to a greater extent. The studies related to the usage of polypropylene fiber showed that the usage of this fiber increases the compressive strength of soil and the most optimum results were found between 1.0 percent to 1.5 percent usages of polypropylene fiber. Above this percentage there will be negative effect on the strength aspects and the compressive strength starts declining.


2014 ◽  
Vol 627 ◽  
pp. 385-388 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Song Hui Yun ◽  
Yong Il Jang ◽  
Hyun Do Yun ◽  
...  

Fly ash and blast furnace slag dumped not only pollutes environment, but also consumes landfills. With the aim of sustainable development, the isolated contribution of fly ash and blast furnace slag in concrete to the mechanical properties of frame concrete is investigated. An experimental study is conducted to investigate mechanical properties of high performance concrete. Test variables are the replacement levels for FA series (10%, 20% and 30%) and for BS series (10%, 30%, 50% and 70%) in place of part of cement. Compressive, splitting tensile strength, modulus of elasticity and flexural strength tests were carried out to evaluate the mechanical properties for up to 7days and 28 days. The mechanical properties of high performance concrete compared with predicted values by ACI 318-02 Code, EC 2-02, JSCE Code, KCI Code and proposed Eq.


2013 ◽  
Vol 372 ◽  
pp. 239-242
Author(s):  
Sun Woong Kim ◽  
Wan Shin Park ◽  
Jeong Eun Kim ◽  
Nam Yong Eom ◽  
Do Gyeum Kim ◽  
...  

This paper addresses the results of an extensive experimental study on the compressive, splitting tensile strength modulus of elasticity in long-term. These tests were carried out to investigate the mechanical properties of HPC for 56 and 91days. In this work, High performance concrete was designed a water-binder ratio of 0.40. In addition, three different concrete mixes were used in these specimens. The results properties of HPC with fly Ash, blast furnace slag and silica fume were effective for compressive strength splitting tensile strength and modulus of elasticity improvement between 56 to 91 curing days.


2014 ◽  
Vol 600 ◽  
pp. 514-519
Author(s):  
Aissa Talah ◽  
F. Kharchi

This paper reports an experimental study of the influence of finely ground-granulated blast-furnace slag (GGBS) used as partial substitute for Portland cement (PC) on the mechanical properties and durability of high performance concretes. The analysis of the experimental results on concrete at 17.5% content of blast furnace slag with a fineness modulus of 8500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to water absorption and migration of chloride ions. On the basis of the experiments performed, it can be concluded that the GGBS is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC).


Sign in / Sign up

Export Citation Format

Share Document