Optimization of Seepage Prevention of Ma Erdang Hydropower Station

2014 ◽  
Vol 1065-1069 ◽  
pp. 619-624
Author(s):  
Li Ting Qiu ◽  
Zhen Zhong Shen ◽  
Xiao Hu Tao

Base on the design of seepage control, the three-dimensional non-steady saturated - unsaturated seepage finite element analysis program CNPM3D is used to establish the three-dimentional finite element seepage model of junction area during operating period. The seepage field of dam site area is studied under the different anti-seepage curtain arrangement scheme. Specifically, the seepage gradient and the seepage discharge of the panel, major material zone, foundation curtains and two sides abutment curtains are analyzed to evaluate the stability of the major district of dam area, in order to provide suggestions for choosing the seepage control standard in the next deepen design stage.The calculation results show that the panel and the impervious curtain anti-seepage effect is remarkable.Impervious curtain can greatly reduce the total seepage flow of the dam and its foundation.However the curtain deepened to 1Lu has little effect on seepage discharge. It is showed that the seepage prevention standards of 3 lu should be proposed in the deepen design stage for both security and economic benefit. The achievement and experience of this seepage prevention design should be taken into consideration for other similar projects.

Author(s):  
Shiyong Yang ◽  
Kikuo Nezu

Abstract An inverse finite element (FE) algorithm is proposed for sheet forming process simulation. With the inverse finite element analysis (FEA) program developed, a new method for concurrent engineering (CE) design for sheet metal forming product and process is proposed. After the product geometry is defined by using parametric patches, the input models for process simulation can be created without the necessity to define the initial blank and the geometry of tools, thus simplifying the design process and facilitating the designer to look into the formability and quality of the product being designed at preliminary design stage. With resort to a commercially available software, P3/PATRAN, arbitrarily three-dimensional product can be designed for manufacturability for sheet forming process by following the procedures given.


2007 ◽  
Vol 353-358 ◽  
pp. 2855-2859
Author(s):  
W.C. Lee ◽  
Chae Sil Kim ◽  
J.B. Na ◽  
D.H. Lee ◽  
S.Y. Cho ◽  
...  

Since most marine engines are generally very huge and heavy, it is required to keep safety from accidents in dealing them. Several types of lifting lugs have been used to assemble hundred ton–large steel structures and carry the assembled engines. Recently a few crashes have been occurred in carrying engines due to breaking down the lugs. Although the stability evaluation of the lifting lug has therefore been very important for safety, systematic design procedure of the lugs, which includes the structural analysis considering stability, has few reported. This paper describes the three dimensional finite element structural modeling for a lifting lug, the studies for determining the reasonable loading and boundary conditions, and the stability evaluation with the results of structural analyses. It should be very helpful for designing the other types of lifting lugs with safety.


2012 ◽  
Vol 215-216 ◽  
pp. 1197-1200 ◽  
Author(s):  
Lei Lei ◽  
Xiao Chun Shi ◽  
Tian Min Guan

In order to validate the force analysis between cycloid gear and pin wheel, the paper built the contact FEM model of between cycloid gear and pin teeth, analyzed statically three-dimensional contact analysis for them and get their contact state. The calculation results coincided with the force analysis method and proved the correctness of the stress analysis theory.


2020 ◽  
Vol 899 ◽  
pp. 94-102
Author(s):  
Nur Faiqa Ismail ◽  
Muhammmad Aiman Firdaus Bin Adnan ◽  
Solehuddin Shuib ◽  
Nik Ahmad Hambali Nik Abd Rashid

External fixator has played an important role in repairing fractured ankle bone. This surgery is done due to the several factors which are the bone is not normal position or has broken into several pieces. The external fixator will help the broken bone to grow and remodel back to the original appearance. However, there are some issues regarding to the stability of this fixation. Improper design and material are the major factor that decreased the stability since it is related to the deformation of the external fixator to hold the bone fracture area. This study aims to design a stable structure for constructing delta frame ankle external fixator to increase the stability of the fixation. There are two designs of external fixator with two types of material used in this present study. Both external fixators with different materials are analyzed in terms of von Mises stress and deformation by using a conventional Finite Element Analysis software; ANSYS Workbench V15. The result obtained shows the Model 1 with stainless steel has less stress and deformation distributions compared to the Model 2. Hence, by using Model 1 as the external fixator, the stability of the fixation can be increased.


2011 ◽  
Vol 308-310 ◽  
pp. 2220-2223 ◽  
Author(s):  
Lei Lei ◽  
Ying Tao ◽  
Tian Min Guan

In order to validate the pin-hole-output mechanism of FA cycloid drive force analysis theory, and based on the study on the basis of the contact problem, this article used the international advanced finite element analysis software ANSYS, established the output dowel pin and cycloid gear pin hole's contacting finite element model, and analyzed the static three-dimensional contact analysis. The calculation results coincided with the proposed pin-hole-output mechanism with gap dynamic stress analysis method, proved the correctness of the stress analysis theory.


2012 ◽  
Vol 49 (5) ◽  
pp. 574-588 ◽  
Author(s):  
T.-K. Nian ◽  
R.-Q. Huang ◽  
S.-S. Wan ◽  
G.-Q. Chen

The vast majority of slopes, both natural and constructed, exhibit a complex geometric configuration and three-dimensional (3D) state, whereas slopes satisfying the assumption of plane strain (infinite length) are seldom encountered. Existing research mainly emphasizes the 3D dimensions and boundary effect in slope stability analysis; however, the effect of complex geometric ground configuration on 3D slope stability is rarely reported. In this paper, an elastoplastic finite-element method using strength-reduction techniques is used to analyze the stability of special 3D geometric slopes. A typical 3D slope underlain by a weak layer with groundwater is described to validate the numerical modeling, safety factor values, and critical slip surface for the 3D slope. Furthermore, a series of special 3D slopes with various geometric configurations are analyzed numerically, and the effects of turning corners, slope gradient, turning arcs, and convex- and concave-shaped surface geometry on the stability and failure characteristics of slopes under various boundary conditions are discussed in detail.


2000 ◽  
Vol 122 (5) ◽  
pp. 516-522 ◽  
Author(s):  
J. M. Garcı´a ◽  
M. Doblare´ ◽  
B. Seral ◽  
F. Seral ◽  
D. Palanca ◽  
...  

The Finite Element Method (FEM) can be used to analyze very complex geometries, such as the pelvis, and complicated constitutive behaviors, such as the heterogeneous, nonlinear, and anisotropic behavior of bone tissue or the noncompression, nonbending character of ligaments. Here, FEM was used to simulate the mechanical ability of several external and internal fixations that stabilize pelvic ring disruptions. A customized pelvic fracture analysis was performed by computer simulation to determine the best fixation method for each individual treatment. The stability of open-book fractures with external fixations at either the iliac crests or the pelvic equator was similar, and increased greatly when they were used in combination. However, external fixations did not effectively stabilize rotationally and vertically unstable fractures. Adequate stabilization was only achieved using an internal pubis fixation with two sacroiliac screws. [S0148-0731(00)00905-5]


2021 ◽  
Vol 2130 (1) ◽  
pp. 012013
Author(s):  
D Stefańczak ◽  
J Gajewski ◽  
M Rogala

Abstract AFO (Ankle-Foot Orthosis), which covers the ankle and foot, protects and supports the ankle joint as well as the structures around it. It contributes to the maintenance of the correct gait cycle. Owing to orthoses, the functional capacity of the body part is significantly improved, and so is the quality of life for the user. Personalized orthoses, which are adapted to the anatomy of the user, are more and more often produced by the additive methods. The use of 3D printing for the manufacturing medical devices is becoming increasingly common due to the low cost of the whole process, short production time and the possibility of the product personalization. One of the stages in manufacturing AFOs with the additive method is to create a three-dimensional model of the orthosis in CAD software. Finite element analysis was performed to assess the mechanical properties of the orthosis. The influence of geometry and the materials used were investigated with FEM analysis software. As a result of structural analysis during the design stage, the assessment of the medical device in terms of its durability and mechanical resistance without putting the user at risk is possible. On the basis of the obtained results, the structure strength was compared.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1964
Author(s):  
Jin-Young Choi ◽  
Jaehee Cho ◽  
Song Hee Oh ◽  
Seong-Hun Kim ◽  
Kyu-Rhim Chung ◽  
...  

High orthodontic forces and various directions of applied forces can be associated with loosening of the screw anchorage in the bone. Screw designs have been modified to increase the stability of the miniscrews. This research evaluates the influence of three-designs on the stability of orthodontic miniscrews. A conventionally cylinder-type miniscrew design (Bio-Action screw, Jin-Biomed co., Bucheon, Korea) was set as a control, and three conditions were studied based on modifications of this control design. Condition-1 has narrowed threads in the upper part of the screw; Condition-2 has a notch at the middle part; and Condition-3 has the combination of Condition-1 and Condition-2. The moment required to unwind the miniscrew to five degrees is tested, and the moment generated at the cortical bone and the trabecular bone were calculated with finite element analysis. Compared to the control, all three conditions showed a higher moment required to unwind the miniscrew and a higher moment generated at the cortical bone. At the trabecular bone, condition-2 and -3 showed higher moment than the control, and condition-1 showed similar moment to the control. Condition-3 required a higher overall moment to unwind the miniscrew. These findings validate the design modifications used to increase the rotational resistance.


Sign in / Sign up

Export Citation Format

Share Document