Small-Signal Equivalent Circuit Modeling and Controller Design of DC/DC Converter Based on Matlab

2014 ◽  
Vol 1070-1072 ◽  
pp. 1586-1591
Author(s):  
Xiao Long Xiao ◽  
Xiao Jun Lu ◽  
Jian Wei Yi ◽  
Xiao Hua Ding

The model-building of DC/DC converter is the key to design the control of system. It is important to study DC/DC converter stability and dynamic performance. A small-signal model of buck/boost circuit was built by average state-space. By analyzing the transfer function of buck/boost circuit, a voltage closed-loop feedback system was designed. Building system of simulation circuit in the Matlab, the result of simulation shows the system has a good static and dynamic performance. It verifies the rationality of the mathematical model and control strategy. It verifies the rationality of the mathematical model and control strategy.

1984 ◽  
Vol 247 (5) ◽  
pp. R927-R931
Author(s):  
M. Okamoto ◽  
K. Hayashi

We have predicted the mathematical model of rate-sensitive feedback control system and have investigated its homeostatic capability by using computer simulations. The results are summarized as follows. By installing a cyclic enzyme system as feedback control element, we could assume the rate-sensitive feedback system at molecular level. This type of feedback had realistic constant-value control capability for external perturbations. This feedback system was more effective for the exclusion of perturbation than was the concentration-sensitive feedback. A large-loop feedback was more stable for perturbation than was short-loop feedback. In sequential feedback system, every key enzyme sensitive to feedback control had to vary the activity at same time for the system to keep homeostasis.


2013 ◽  
Vol 397-400 ◽  
pp. 1169-1173
Author(s):  
Hong Wei Tang ◽  
Xi Kun Chen ◽  
Yan Xia Gao

To adapt to the requirements of the charging and discharging of the lithium battery, the paper presents a three-level based bidirectional energy storage converter topology.It has strong adaptability and can manage the charge and discharge of multi-series and parallel battery module. The mathematical model of the converter is analyzed, and the two operation modes of the converter control strategy are studied; Analysis the feed-forward decoupling control of three-level rectifier, and the variable scale factor is used to control midpoint potential. The simulation results demonstrate the feasibility of the design.


Author(s):  
Dian-sheng Chen ◽  
Yu-xin Chen ◽  
Tian-miao Wang

In order to let the student understand the linear motion module’ principles and know how to improve the dynamic performance and control accuracy, a mathematical model is established based on the analysis of the composition and working principle of linear motion module. On the load and unload conditions, we simulate and analyze the system respectively. In the load case, PID parameters are obtained after the PID regulation. The correction of establishing the mathematical model and simulating the system are verified so that the linear motion model’ precision is effectively enhanced.


2014 ◽  
Vol 672-674 ◽  
pp. 1012-1015
Author(s):  
He Zhu ◽  
Da Tian Xu ◽  
Hao Ran Zhao

Based on the mathematical model of the PWM converter, control strategy of the grid-side converter directed by the grid voltage and control strategy of the rotor-side converter directed by the stator flux were established combining the vector control theory. The method using the nonlinear simplex algorithm to optimize the PI control parameters of the DFIG unit was first proposed, optimization results proved that this method had good practicality and robustness.


2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Shining Li ◽  
Wenbin Ji ◽  
Zhenlin Sun ◽  
Yufeng Zhao

Purpose This study aims to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A force control strategy of backstepping + proportion integration differentiation (PID) is proposed. The grinding end effector is installed on the flange of the robot. The robot controls the position and posture of the grinding end actuator and the grinding end actuator controls the grinding force output. First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. Finally, the feasibility of the proposed method is verified by simulation and experiment. Findings The simulation and experimental results show that the backstepping + PID strategy can track the expected force quickly, and improve the dynamic response performance of the system and the quality of grinding and polishing of automobile wheel hub. Research limitations/implications The mathematical model is based on the pneumatic system and ideal gas, and ignores the influence of friction in the working process of the cylinder, so the mathematical model proposed in this study has certain limitations. A new control strategy is proposed, which is not only used to control the grinding force of automobile wheels, but also promotes the development of industrial control. Social implications The automatic constant force grinding of automobile wheel hub is realized, and the manpower is liberated. Originality/value First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. The nonlinear model of the system is controlled by backstepping method, and in the process, the linear system composed of errors is obtained, and then the linear system is controlled by PID to realize the combination of backstepping and PID control.


Author(s):  
Sudhakar Yadav ◽  
Vivek Kumar

This study develops a mathematical model for describing the dynamics of the banana-nematodes and its pest detection method to help banana farmers. Two criteria: the mathematical model and the type of nematodes pest control system are discussed. The sensitivity analysis, local stability, global stability, and the dynamic behavior of the mathematical model are performed. Further, we also develop and discuss the optimal control mathematical model. This mathematical model represents various modes of management, including the initial release of infected predators as well as the destroying of nematodes. The theoretical results are shown and verified by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document