Effects of Different Water Managements on Yield and Cadmium Accumulation in Rice

2014 ◽  
Vol 1073-1076 ◽  
pp. 248-252
Author(s):  
Yin Fei Lv ◽  
Yan Fang Ren ◽  
Dong Liu ◽  
Yan Chao Zhang ◽  
Jun Yu He

Water management affects the bioavailability of cadmium (Cd) in the soil and hence their accumulation in rice and grain yields. A pot experiment was carried out to investigate the effects of different water managements (flooding, intermittent irrigation and aerobic) on rice yield and cadmium accumulation in rice plants growing on cadmium contaminated soil. The results showed that compared to the flooding and aerobic treatment, the intermittent irrigation increased grain yield by 7.55-29.58%, which contributed to the increase of seed setting rate and panicle number. Compared with the intermittent irrigation, aerobic treatment significantly increased Cd contents in roots, straw and grains, while flooding reduced the Cd contents in rice. Compared with flooding, both aerobic and intermittent irrigation enhanced Cd distribution in the root and reduced it in the straw and grain. With increasing irrigation from aerobic to flooded conditions, the soil available Cd concentrations decreased significantly. The patterns of soil pH change were just opposite to those of soil available Cd. Thus, intermittent irrigation could increase rice yield and also reduce Cd in the grain.

2021 ◽  
Author(s):  
Tiankang Wang ◽  
Yixing Li ◽  
Shufeng Song ◽  
Mudan Qiu ◽  
Licheng Zhang ◽  
...  

Abstract Seed setting rate is one of the critical factors that determine rice yield. Grain formation is a complex biological process, whose molecular mechanism is yet to be improved. Here we investigated the function of an OVATE family protein, Embryo Sac Development 1 (ESD1), in the regulation of seed setting rate in rice (Oryza sativa) by examining its loss-of-function mutants generated via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) technology. ESD1 was predominantly expressed at Stage 6 of panicle development, especially in the ovules. esd1 mutants displayed reduced seed setting rates with normal stamen development and pollen tube growth but abnormal pistil group. Investigation of embryo sacs revealed that during the mitosis of functional megaspores, some egg cells degraded during differentiation in esd1 mutants, thereby hindering subsequent fertilization process and reducing seed setting rate. In addition, the transcriptional level of O. sativa anaphase-promoting complex 6, a reported embryo sac developing gene, was significantly reduced in esd1 mutants. These results support that ESD1 is an important modulator of ESD and seed setting rate in rice. Together, this finding demonstrates that ESD1 positively regulates the seed setting rate by controlling ESD in rice and has implications for the improvement of rice yield.


2021 ◽  
Author(s):  
Tiankang Wang ◽  
Yixing Li ◽  
Shufeng Song ◽  
Mudan Qiu ◽  
Licheng Zhang ◽  
...  

AbstractSeed setting rate is one of the critical factors that determine rice yield. Grain formation is a complex biological process, whose molecular mechanism is yet to be improved. Here we investigated the function of an OVATE family protein, Embryo Sac Development 1 (ESD1), in the regulation of seed setting rate in rice (Oryza sativa) by examining its loss-of-function mutants generated via CRISPR/Cas9 technology. ESD1 was predominantly expressed at stage 6 of panicle development, especially in the ovules. esd1 mutants displayed reduced seed setting rates with normal stamen development and pollen tube growth but abnormal pistil group. Investigation of embryo sacs revealed that during the mitosis of functional megaspores, some egg cells degraded during differentiation in esd1 mutants, thereby hindering subsequent fertilization process and reducing seed setting rate. In addition, the transcriptional level of OsAPC6, a reported embryo sac developing gene, was found to be significantly reduced in esd1 mutants. These results support that ESD1 is an important modulator of embryo sac development and seed setting rate in rice. Together, this finding demonstrates that ESD1 positively regulates the seed setting rate by controlling embryo sac development in rice, and has implications for the improvement of rice yield.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Penghui Li ◽  
Hui Li ◽  
Zhijian Liu ◽  
Yong Zhuang ◽  
Ming Wei ◽  
...  

Abstract Background Grain shape is a critical agronomic trait affecting grain yield and quality. Exploration and functional characterization of grain shape-related genes will facilitate rice breeding for higher quality and yield. Results Here, we characterized a recessive mutant named Oat-like rice for its unique grain shape which highly resembles oat grains. The Oat-like rice displayed abnormal floral organs, an open hull formed by remarkably elongated leafy lemmas and paleae, occasionally formed conjugated twin brown rice, an aberrant grain shape and a low seed setting rate. By map-based cloning, we discovered that Oat-like rice harbors a novel allele of OsMADS1 gene (OsMADS1Olr), which has a spontaneous point mutation that causes the substitution of an amino acid that is highly conserved in the MADS-box domain of the MADS-box family. Further linkage analysis indicated that the point mutation in the OsMADS1Olr is associated with Oat-like rice phenotype, and expression analysis of the OsMADS1 by qRT-PCR and GUS staining also indicated that it is highly expressed in flower organs as well as in the early stages of grain development. Furthermore, OsMADS1Olr-overexpressing plants showed similar phenotypes of Oat-like rice in grain shape, possibly due to the dominant negative effect. And OsMADS1-RNAi plants also displayed grain phenotypes like Oat-like rice. These results suggested that OsMADS1Olr is responsible for the Oat-like rice phenotype including aberrant grain shape. Moreover, the expression levels of representative genes related to grain shape regulation were apparently altered in Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi transgenic plants. Finally, compared with Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants, mild phenotype of seed-specific OsMADS1-RNAi transgenic plants indicated that OsMADS1 may has has a direct regulation role in grain development and the grain phenotypes of Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants are majorly caused by the abnormal lemma and palea development. Conclusions Altogether, our results showed that grain shape and a low seed setting rate of the notable ‘Oat-like rice’ are caused by a spontaneous point mutation in the novel allele OsMADS1Olr. Furthermore, our findings suggested that OsMADS1 mediates grain shape possibly by affecting the expression of representative genes related to grain shape regulation. Thus, this study not only revealed that OsMADS1 plays a vital role in regulating grain shape of rice but also highlighted the importance and value of OsMADS1 to improve the quality and yield of rice by molecular breeding.


Author(s):  
Hanqing Tang ◽  
Demei Hu ◽  
Chao Zhang ◽  
Juan Yang ◽  
Mengda Xiang ◽  
...  

The differentiation of reproductive characteristics not only exists between different populations, but also may exist within populations. In this work, the differences between the central and peripheral populations were experimentally compared and analyzed in terms of biodiversity index, plant traits, anthesis, pollen germination, floral visitors, seed setting rate, and ploidy. The results showed that the diversity and richness of other plant species, in the central population were significantly lower than those in the peripheral population, but the plant density was much higher than in the peripheral population. The plant anatomical traits, anthesis, pollen germination, floral visitors, seed setting rate, and ploidy were significantly different between central population and peripheral populations. The term increasing rate (IR) is proposed as a means of comparing morphologies in different organs. IR differences in vegetative characteristics were more stable, while those in reproductive characteristics differed significantly. For the central population, the effect of the intraspecific reproductive competition and pollinator selection on plants may significant, and morphology was differentiated in terms of reproductive characteristics. Plants in the peripheral populations were visited by many more pollinators than in the central population, and all pollinators visited infrequently. The reproductive characteristics of plants in the peripheral populations may therefore only be weakly affected by pollinator selection. The reproductive characteristics of plants in the peripheral population may weakly affected by the selection of pollinators and the variation was small. In conclusion, morphological differentiation among the different populations was associated with differences in vegetative and reproductive characteristics.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Shuangcheng Li ◽  
Wenbo Li ◽  
Bin Huang ◽  
Xuemei Cao ◽  
Xingyu Zhou ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (59) ◽  
pp. 47584-47591 ◽  
Author(s):  
Yicheng Yin ◽  
Yaqin Wang ◽  
Yunguo Liu ◽  
Guangming Zeng ◽  
Xinjiang Hu ◽  
...  

A Cd-tolerant plant species named Boehmeria nivea (L.) Gaudich (ramie) was applied to study its Cd accumulation and translocation mechanisms with the addition of ethylene diamine tetracetic acid (EDTA) or nitrilotriacetic acid (NTA).


PLoS Genetics ◽  
2017 ◽  
Vol 13 (7) ◽  
pp. e1006906 ◽  
Author(s):  
Yang Xu ◽  
Jie Yang ◽  
Yihua Wang ◽  
Jiachang Wang ◽  
Yang Yu ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
pp. 1
Author(s):  
Nurwulan Agustiani ◽  
Sujinah Sujinah ◽  
Indrastuti Apri Rumanti

<p class="abstrakinggris"><span lang="EN-US">Stagnant flooding (SF) stress has contributed decreasing rice production in Indonesia. The study aimed to explore critical variables of rice growth that contribute to the decreasing grain yield under SF conditions and a common irrigation system (control). The experiment was arranged in a complete randomized block design with four replications to test 10 rice genotypes (Inpari 30 Ciherang Sub-1, Inpara 3, Inpara 4, Inpara 8, IRRI119, IRRI154, IR42, IR14D121, IR14D157, and Tapus). The water depth was managed according to the farmer’s practices for control, while for SF plots the standing water depth was gradually increased from 35 days after transplanting and was maintained at 50 cm until harvest. Results showed that plant height, tillering ability, leaf greenness, panicle number per hill and grain filling percentage were critical growth variables that affect grain yield at optimal conditions. The yield of the 10 genotypes decreased by 25–50% under SF conditions. Inpara 3 had the stable yield in those two watering conditions. Therefore, it could be used as a check variety for SF condition. Inpara 9 and IRRI119 experienced decreased yield of more than 50% under SF conditions. The key factors determining the decreased yield were tillering ability and green leaf level. Optimization of the two variables at SF conditions will largely determine rice yield associated with panicle number per hill and grain number per panicle. Results of the study are useful as preliminary recommendations for designing new variety and cultivation techniques to reduce the impact of SF stress on rice yield.</span></p>


2020 ◽  
Author(s):  
Liang Li ◽  
Pengyue Zhu ◽  
Xiaoyang Wang ◽  
Zhenhua Zhang

Abstract Background: Coexistence of polycylic aromatic hydrocarbons (PAHs) and heavy metals deleteriously threatens the quality of environmental health . Few reports uncover the mechanism of inoculation plants with Piriformospora indica for remediating PAH- m etal co-contaminated soil by analyzing the chemical speciations of contaminants . This study investigated the influence of inoculation Medicago sativa with P. indica to remediate phenanthrene (kind of PAHs ) , and cadmium (one of heavy metals ) co-contaminated soil by analyzing the plant growth, physiological parameters and chemical speciation in rhizosphere and non-rhizosphere . Results: T he presence of P. indica significantly increased plants tolerance, Chlorophyll a , Chlorophyll b , maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene an d /or cadmium contaminated soil. P. indica inoculation in M edicago sativa root increased f luorescein diacetate activities in phenanthrene, cadmium and both of that co-contaminated soil, especially in non-rhizosphere . The presence of phenanthrene hindered the inoculated plant from accumulating cadmium to some extent ; Whereas the presence of cadmium did not hinder the degradation of phenanthrene in both rhizosphere and non-rhizosphere after P. indica colonization. Although the poor bioavailability of cadmium in rhizosphere restricted the transportation into stem, P. indica colonization in plant efficiently increased cadmium accumulation in root in cadmium and phenanthrene co-contaminated soil. Conclusions: In conclusion, t he work provides the theoretical basis that Piriformospora indica combined with Medicago sativa contributed to the remediation of PAH-Metal co-contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document