Heat Sink Cooling Fan and Rotation Speed Effect Analysis on Heat Dissipation of High Power GaN LED Package

2014 ◽  
Vol 1082 ◽  
pp. 315-318
Author(s):  
Rajendaran Vairavan ◽  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Hussin Kamarudin ◽  
Muammar Mohamad Isa ◽  
...  

In this work, thermal simulation analysis on high power LED is reported where the effect of the heat sink cooling fan and its rotation speed on the heat dissipation of the high power LED was evaluated. Ansys version 11 was utilized for the simulation. The thermal performance of the high power LED package was assessed in terms of operating junction temperature, von Mises stress and thermal resistance. The heat dissipation analysis was done under four types of convection condition:one natural convection conditionthree forced convection condition,. The forced convection condition was used to replicate the effect of a fan with various rotation speeds placed under the heat sink to increase the convective heat transfer coefficient. Results of the analysis showed that that the junction temperature, von Mises stress and thermal resistance of the GaN chip reduces with the increase of the fan rotation speed.

2014 ◽  
Vol 1082 ◽  
pp. 344-347
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Hussin Kamarudin ◽  
Mukhzeer Mohamad Shahimin ◽  
...  

High power LEDs are currently being plagued by heat dissipation challenges due to its high power density thus limiting its further potential development and fulfillment. Exercising proper selection of packaging component could improve the life time of high power LED. In this work, the significance of the heat slug geometry on the heat dissipation of high power LED was addressed through simulation analysis. The heat slug geometries were varied in order to compare the heat dissipation of the high power LED. Ansys version 11 was utilized for the simulation. The heat dissipation of the high power LED was evaluated in terms of junction temperature, von Mises stress and thermal resistance. The key results of the analysis showed that a superior surface area is preferred for an enhanced heat dissipation of high power LED


2014 ◽  
Vol 893 ◽  
pp. 811-814
Author(s):  
Rajendaran Vairavan ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy

The vast development of the LED industry has created contemporary set of thermal issues with limits the reliability of the high power LEDs. Thus, this paper reports a simulation analysis done on single chip high power LED package to evalute the effects of heat slug material on the heat dissipation of the LED package. The heat dissipation of two types of heat slug material, aluminum (Al) and copper (Cu) were compared in terms of junction temperature, von Mises stress and thermal resistance of the LED chip at varied input power of 0.1 W and 1W. Results of the analysis showed that the copper heat slug exhibits a better heat dissipation due to its superior thermal conductivity.


2014 ◽  
Vol 1082 ◽  
pp. 319-322
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Steven Taniselass ◽  
Hussin Kamarudin

Accession of power in high power LED light source has resulted in thermal issue which causes reliability malfunction due to deficient heat dissipation. However, the heat disspation of high power LED can be enhance by improving packaging material selection.Thus, in this work, the connotation of heat slug material on the thermal performance of high power LED package was analyzed through simulation method. The significance of two heat slug materials, copper (Cu) and copper diamond (CuDia) were evaluated in terms of junction temperature, von Mises stress and thermal resistance. The simulation was executed using Ansys version 11 at ambient temperature of 25 °C with natural convection condition.


2014 ◽  
Vol 487 ◽  
pp. 536-539 ◽  
Author(s):  
Rajendaran Vairavan ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
Nazuhusna Khalid ◽  
K. Anwar ◽  
...  

This paper presents the characterization of a single chip high power LED package through simulation. Ansys version 11 was used for the simulation. The characterization of the LED package with aluminum cylindrical heat slug was carried out under natural convection condition at ambient temperature of 25°C. The junction temperature and the stress of the LED chip was assesed. The LED chip was powered with input power of 0.1 W and 1 W and the heat dissipation was assesed. Results showed that that the junction temperature and the Von Mises Stress of the single chip LED package increases with the increased input power.


2011 ◽  
Vol 32 (11) ◽  
pp. 1171-1175 ◽  
Author(s):  
柴伟伟 CHAI Wei-wei ◽  
陈清华 CHEN Qing-hua ◽  
李琳红 LI Ling-hong ◽  
唐文勇 TANG Wen-yong ◽  
张学清 ZHANG Xue-qing ◽  
...  

2012 ◽  
Vol 4 ◽  
pp. 153-160
Author(s):  
De Huai Zeng ◽  
Yuan Liu ◽  
Li Li ◽  
De Gui Yu ◽  
Gang Xu

With the development of high power LED technology, junction temperature as a key factor constrains the performance and the service life of LED, and the main parameter of junction temperature is thermal resistance. Therefore, how to measure the thermal resistance of high power LED quickly and accurately plays an important part in improving the performance and the service life of LED. In this paper the accurate and fast measurement equipment was applied to study the thermal characteristics of high power LED. The forward-voltage based method was conducted to measure the junction temperature of high power. Then, support vector regression (SVR) combined with genetic algorithm (GA) for its parameter optimization, was proposed to establish a model to predict the thermal resistance of high power LED. The prediction performance of GA-SVR was compared with those of BPNN model. The result demonstrated that the estimated errors GA-SVR models, such as Mean Absolute Relative Error (MARE) and Root Mean Squared Errors (RMSE), all are smaller than those achieved by the BPNN applying identical samples.


2014 ◽  
Vol 1082 ◽  
pp. 332-335
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Hussin Kamarudin ◽  
Muammar Mohamad Isa ◽  
Gan Meng Kuan

In this paper, the heat distribution for single chip high power LED package attached with varied heat sink fin shapes were analyzed through simulation. The main focus of this study was to scrutinize the fluctuation of junction temperature with different shapes of heat sink fin designs. The simulation was done using Ansys version 11. The single chip LED was loaded with input power of 0.5 W and 1 W . Simulation was done at ambient temperature of 25°C under three convection coefficient of 5, 10 and 15 W/m2.oC respectively. The obtained results showed that the LED package with pyramid pin fin heat sink has demonstrated a better thermal performance compared to the LED package with cylindrical pin fin heat sink.


2006 ◽  
Vol 326-328 ◽  
pp. 309-312 ◽  
Author(s):  
Sung Jun Lee ◽  
Ji Hyun Park ◽  
Chang Hyun Lim ◽  
Won Kyu Jeong ◽  
Seog Moon Choi ◽  
...  

By the development of high power LED for solid states lighting, the requirement for driving current has increased critically, thereby increasing power dissipation. Heat flux corresponds to power dissipation is mainly generated in p-n junction of LED, so the effective removal of heat is the key factor for long lifetime of LED chip. In this study, we newly proposed the silicon package for high power LED using MEMS technology and estimated its heat dissipation characteristic. Our silicon package structure is composed of base and reflector cup. The role of base is that settle LED chip at desired position and supply electrical interconnection for LED operation, and finally transfer the heat from junction region to outside. For improved heat transfer, we introduced the heat conductive metal plated trench structure at the opposite side of LED attached side. The depth and the diameter of trench were 150 and 100um, respectively. Copper with high thermal conductivity than silicon was filled in trench by electroplating and the thickness of copper was about 100um. Reflector cup was formed by anisotropic wet etching and then, silicon package platform could be fabricated by eutectic bonding between base and reflector cup. The thermal resistance of silicon package was about 6 to 7K/W from junction to case, and also, thermal resistance reduction of 0.64K/W was done by metal plated trench. This result could be comparable to that of other high power LED package. Our silicon package platform is easy to be expanded into array and wafer level package. So, it is suitable for future high efficiency and low cost package.


2010 ◽  
Vol 139-141 ◽  
pp. 1433-1437
Author(s):  
Kai Lin Pan ◽  
Jiao Pin Wang ◽  
Jing Liu ◽  
Guo Tao Ren

Heat dissipation and cost are the key issues for light-emitting diode (LED) packaging. In this paper, based on the thermal resistance network model of LED packaging, three-dimensional heat dissipation model of high power multi-chip LED packaging is developed and analyzed with the application of finite element method. Temperature distributions of the current multi-chip LED packaging model are investigated systematically under the different materials of the chip substrate, die attach, and/or different structures of the heat sink and fin. The results show that the junction temperature can be decreased effectively by increasing the height of the heat sink, the width of the fin, and the thermal conductivity of the chip substrate and die attach materials. The lower cost and higher reliability for LED source can be obtained through reasonable selection of materials and structure parameters of the LED lighting system.


Sign in / Sign up

Export Citation Format

Share Document