The Effection of Discharge Current on Hydrogen Plasma in the Cascaded Arc

2014 ◽  
Vol 1082 ◽  
pp. 85-89
Author(s):  
Jiang Long Li ◽  
Hong Lei Hao

In this paper, we use PLASIMO to investigate the effect of discharge current on hydrogen plasma in the cascaded arc, the effects of discharge current on plasma properties were investigated. temperature, conductivity, and the distribution of electron density along the symmetry axis of hydrogen plasma is analyzed in the simulation area. The simulation results show that plasma temperature is 0.9503×104, 1.09862×104, 1.26675×104, 1.65102×104 K in the symmetry axis when the discharge current is 35, 50, 75 and 100A, meanwhile, electric conductivity is 1738.03, 2272.72, 2819.86, 3820.73 s/m.

2019 ◽  
Vol 13 (26) ◽  
pp. 64-75
Author(s):  
Qusay A. Abbas

The effect of Al dust particles on glow discharge regions, dischargevoltage, discharge current, plasma potential, floating potential,electron density and electron temperature in planar magnetronsputtering device has been studied experimentally. Four cylindricalLangmuir probes were employed to measure plasma parameters atdifferent point on the radial axis of plasma column. The resultsshows the present of Al dust causes to increase the discharge voltageand reduce the discharge current. There are two electron groups inthe present and absent of Al dust particles. The radial profiles ofplasma parameters in the present of dust are non- uniform. Thefloating potential of probe becomes more negatively while theplasma potential becomes positive when the dust immersed intoplasma region. The electron density increases in the present of dustparticle which lead to decreases the electron temperature.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Ivan A. Ivanov ◽  
V. O. Ustyuzhanin ◽  
A. V. Sudnikov ◽  
A. Inzhevatkina

A plasma gun for forming a plasma stream in the open magnetic mirror trap with additional helicoidal field SMOLA is described. The plasma gun is an axisymmetric system with a planar circular hot cathode based on lanthanum hexaboride and a hollow copper anode. The two planar coils are located around the plasma source and create a magnetic field of up to 200 mT. The magnetic field forms the magnetron configuration of the discharge and provides a radial electric insulation. The source typically operates with a discharge current of up to 350 A in hydrogen. Plasma parameters in the SMOLA device are Ti ~ 5 eV, Te ~ 5–40 eV and ni ~ (0.1–1)  × 1019 m−3. Helium plasma can also be created. The plasma properties depend on the whole group of initial technical parameters: the cathode temperature, the feeding gas flow, the anode-cathode supply voltage and the magnitude of the cathode magnetic insulation.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 148
Author(s):  
Vittorio Giannetti ◽  
Manuel Martín Saravia ◽  
Luca Leporini ◽  
Simone Camarri ◽  
Tommaso Andreussi

One of the main oscillatory modes found ubiquitously in Hall thrusters is the so-called breathing mode. This is recognized as a relatively low-frequency (10–30 kHz), longitudinal oscillation of the discharge current and plasma parameters. In this paper, we present a synergic experimental and numerical investigation of the breathing mode in a 5 kW-class Hall thruster. To this aim, we propose the use of an informed 1D fully-fluid model to provide augmented data with respect to available experimental measurements. The experimental data consists of two datasets, i.e., the discharge current signal and the local near-plume plasma properties measured at high-frequency with a fast-diving triple Langmuir probe. The model is calibrated on the discharge current signal and its accuracy is assessed by comparing predictions against the available measurements of the near-plume plasma properties. It is shown that the model can be calibrated using the discharge current signal, which is easy to measure, and that, once calibrated, it can predict with reasonable accuracy the spatio-temporal distributions of the plasma properties, which would be difficult to measure or estimate otherwise. Finally, we describe how the augmented data obtained through the combination of experiments and calibrated model can provide insight into the breathing mode oscillations and the evolution of plasma properties.


2000 ◽  
Vol 18 (9) ◽  
pp. 1043-1053 ◽  
Author(s):  
A. M. Smith ◽  
S. E. Pryse ◽  
L. Kersley

Abstract. Observations by the EISCAT Svalbard radar in summer have revealed electron density enhancements in the magnetic noon sector under conditions of IMF Bz southward. The features were identified as possible candidates for polar-cap patches drifting anti-Sunward with the plasma flow. Supporting measurements by the EISCAT mainland radar, the CUTLASS radar and DMSP satellites, in a multi-instrument study, suggested that the origin of the structures lay upstream at lower latitudes, with the modulation in density being attributed to variability in soft-particle precipitation in the cusp region. It is proposed that the variations in precipitation may be linked to changes in the location of the reconnection site at the magnetopause, which in turn results in changes in the energy distribution of the precipitating particles.Key words: Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; polar ionosphere)


2007 ◽  
Vol 25 (9) ◽  
pp. 2019-2027 ◽  
Author(s):  
L. Liu ◽  
W. Wan ◽  
M.-L. Zhang ◽  
B. Ning ◽  
S.-R. Zhang ◽  
...  

Abstract. A 30-day incoherent scatter radar (ISR) experiment was conducted at Millstone Hill (288.5° E, 42.6° N) from 4 October to 4 November 2002. The altitude profiles of electron density Ne, ion and electron temperature (Ti and Te), and line-of-sight velocity during this experiment were processed to deduce the topside plasma scale height Hp, vertical scale height VSH, Chapman scale height Hm, ion velocity, and the relative altitude gradient of plasma temperature (dTp/dh)/Tp, as well as the F2 layer electron density (NmF2) and height (hmF2). These data are analyzed to explore the variations of the ionosphere over Millstone Hill under geomagnetically quiet and disturbed conditions. Results show that ionospheric parameters generally follow their median behavior under geomagnetically quiet conditions, while the main feature of the scale heights, as well as other parameters, deviated significantly from their median behaviors under disturbed conditions. The enhanced variability of ionospheric scale heights during the storm-times suggests that the geomagnetic activity has a major impact on the behavior of ionospheric scale heights, as well as the shape of the topside electron density profiles. Over Millstone Hill, the diurnal behaviors of the median VSH and Hm are very similar to each other and are not so tightly correlated with that of the plasma scale height Hp or the plasma temperature. The present study confirms the sensitivity of the ionospheric scale heights over Millstone Hill to thermal structure and dynamics. The values of VSH/Hp tend to decrease as (dTp/dh)/Tp becomes larger or the dynamic processes become enhanced.


2018 ◽  
Vol 73 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Jhonatha R. dos Santos ◽  
Jonas Jakutis Neto ◽  
N. Rodrigues ◽  
M.G. Destro ◽  
José W. Neri ◽  
...  

In this work, we suggest a methodology to determine the impact parameter for neutral dysprosium emission lines from the characterization of the plasma generated by laser ablation in a sealed chamber filled with argon. The procedure is a combination of known consistent spectroscopic methods for plasma temperature determination, electron density, and species concentration. With an electron density of 3.1 × 1018 cm–3 and temperature close to 104 K, we estimated the impact electron parameter for nine spectral lines of the neutral dysprosium atom. The gaps in the impact parameter data in the literature, mainly for heavy elements, stress the importance of the proposed method.


2021 ◽  
pp. 61-64
Author(s):  
M.S. Ladygina ◽  
Yu.V. Petrov ◽  
D.V. Yeliseev ◽  
V.A. Makhlai ◽  
N.V. Kulik ◽  
...  

Present experimental studies are aimed at analysis of hydrogen plasma stream parameters in various working regimes of QSPA-M operation. Temporal distributions of plasma electron density are reconstructed with optical emission spectroscopy. The magnetic field influence on plasma streams parameters is analyzed. It is shown that in regimes with additional magnetic field the plasma electron density increases by an order of magnitude in comparison with a density value without magnetic field. The plasma velocity and energy density parameters as well as their temporal behaviors were estimatedin different operating regimes of QSPA-M facility. Features of plasma visible radiation were analyzed. This information is important for QSPA-M applications in experiments on interaction of powerful plasma streams with material surfaces.


2019 ◽  
Vol 34 (12) ◽  
pp. 2378-2384 ◽  
Author(s):  
Ran Hai ◽  
Zhonglin He ◽  
Ding Wu ◽  
Weina Tong ◽  
Harse Sattar ◽  
...  

During laser ablation, the spectral emission intensity, plasma temperature and electron density increased significantly with increasing sample temperature.


Sign in / Sign up

Export Citation Format

Share Document