Proton Conducting Biopolymer Electrolytes Based on Starch Incorporated with Ammonium Thiocyanate

2015 ◽  
Vol 1112 ◽  
pp. 275-278 ◽  
Author(s):  
Fatin Nabella Zulkefli ◽  
S. Navaratnam ◽  
Azizah Hanom Ahmad

In the present study, proton conducting biopolymer electrolyte systems based on corn starch and NH4SCN salt were prepared using solution casting method. The sample with 30 wt.% NH4SCN exhibited the highest ionic conductivity of 5.54 x 10-3S cm-1at room temperature. Temperature-dependence ionic conductivity relationship obeys Arrhenius model and minimum activation energy of 0.28 eV was obtained for the highest conducting composition.

2015 ◽  
Vol 1107 ◽  
pp. 230-235 ◽  
Author(s):  
N.A.M. Noor ◽  
M.I.N. Isa

In this work, solid biopolymer electrolytes (SBE) containing carboxymethyl cellulose (CMC) doped with ammonium thiocyanate (NH4SCN) were prepared via solution casting method. The ionic conductivity and dielectric properties of CMC-NH4SCN system were investigated by electrical impedance spectroscopy in the temperature range of 303-353 K. The dc conductivity shows that the highest ionic conductivity of 6.48 x 10-5 Scm-1 at ambient temperature was obtained when 25 wt.% of NH4SCN was incorporated. The temperature dependence of ionic conductivity revealed that CMC-NH4SCN system was discovered to obey Arrhenius law where the regression value is almost unity (R2≈1). Activation energy of CMC-NH4SCN system was found to decrease with the increment of NH4SCN concentration. The dielectric behaviour of the CMC-NH4SCN system have been analyzed using dielectric permittivity (ε*) and electrical modulus (M*) spectra. Results from dielectric studies showed a non-Debye behaviour of CMC-NH4SCN system.


2013 ◽  
Vol 856 ◽  
pp. 118-122 ◽  
Author(s):  
A.S. Samsudin ◽  
M.I.N. Isa

Solid biopolymer electrolytes (SBE) comprising carboxymethyl cellulose (CMC) with NH4Br-EC were prepared by solution casting method. The samples were characterized by impedance spectroscopy (EIS) and sample containing 25wt. % of NH4Br exhibited the highest room temperature conductivity of 1.12 x 10-4S/cm for salted CMC based SBE system. The ionic conductivity increased to 3.31 x 10-3S/cm when 8 wt. % of ethylene carbonate (EC) was added to the highest conductivity. The conductivity-temperature of plasticized SBE system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The influence of EC addition on unplasticized CMC based SBE was found to be dependent on the number and the mobility of the ions. This results revealed that the influence of plasticizer (EC) which was confirmed play the significant role in enhancement of ionic conductivity for SBE system.


2017 ◽  
Vol 268 ◽  
pp. 347-351 ◽  
Author(s):  
Syakirah binti Shahrudin ◽  
Azizah Hanom Ahmad

Corn starch (CS) – sodium chloride (NaCl) based polymer electrolytes were prepared by solution casting technique. At room temperature, CS-NaCl film with ratio of 70 wt. % - 30 wt. % demonstrates the highest ionic conductivity in the range of (1.72 ± 0.12) x10-5 Scm-1. Temperature-dependence ionic conductivity study follows Arrhenius model and using related plot, the activation energy for highest conducting composition is 0.16eV. The transport number measurement studies confirmed that the ionic conductivity of this polymer electrolyte is due to ions. Fourier transform infrared spectroscopy (FTIR) analysis proved the interaction between CS and NaCl.


2021 ◽  
Vol 1025 ◽  
pp. 26-31
Author(s):  
Nurhasniza Mamajan Khan ◽  
Noor Saadiah Mohd Ali ◽  
Ahmad Salihin Samsudin

The present work highlights on the structural and conduction properties of the solid biopolymer electrolytes (SBPE) based carboxymethyl cellulose (CMC) doped dodecyltrimethyl ammonium bromide (DTAB) and plasticized with ethylene carbonate (EC). The SBPE exhibits high ionic conductivity at room temperature where the highest value reaching 1.0 x 10-3 S cm-1 for sample containing with 10 wt. % of EC and increases the ionic conductivity when temperature was increased. Complexation within the SBPE has been confirmed by the FTIR analysis where the intermolecular interaction has improvised the coordination between CMC-DTAB and EC resulting in better structural and conductivity ability. The findings suggest that the great potential of CMC and make it promising to serve as an electrolyte for electrochemical devices.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Shanti Navaratnam ◽  
Azlin Sanusi ◽  
A. H. Ahmad ◽  
S. Ramesh ◽  
K. Ramesh ◽  
...  

Biopolymer electrolytes are currently attracting a great deal of attention as substitute for synthetic polymers in electrochemical devices, as they are cost effective and eco-friendly. In this research, the biopolymer potato starch/chitosan blend polymer electrolyte film doped with LiCF3SO3 was prepared by solution casting method. Sample with 35wt. % LiCF3SO3 showed the highest ionic conductivity at room temperature. The dielectric studies reveal the non-Debye nature of the electrolyte. The Rice and Roth model was used quantitatively to explain the conductivity trends of the prepared electrolyte systems. The complexation of salt with the polymer host was studied using Fourier transform infrared (FTIR) spectroscopy.


Author(s):  
A.S.A Khiar ◽  
S. Mat Radzi ◽  
N. Abd Razak

Lauroyl-chitosan/poly(methylmethacrylate)-lithium trifluorosulfonate (LiCF3SO3) polymer electrolytes has been prepared by the solution casting method. Ionic conductivity analysis was conducted over a wide range of frequency between 50 Hz-1 MHz using impedance spectroscopy to evaluate the dielectric properties and conductivity of the sample. Sample with 30 wt% of LiCF3SO3 showed the highest conductivity of 7.59 ± 3.64 x 10-4 Scm-1 at room temperature. Complex permittivity for real (εr), imaginary (εi) and electrical modulus for real (Mr) and imaginary (Mi) part was determined and plotted. The relaxation time, τ for these samples was determined and the plot shows that τ decreases with conductivity of the complexes.


2016 ◽  
Vol 78 (6-5) ◽  
Author(s):  
A. S. Samsudin ◽  
M. I. N. Isa

This paper present the development of plasticized solid bio-electrolytes (PSBs) which has been accomplished by incorporating various composition of plasticizer namely ethylene carbonate (EC) with carboxy methylcellulose doped NH4Br via solution casting method. The plasticized polymer–salt ionic conduction of PSBs has been analyzed by electrical impedance spectroscopy. Plasticization using EC in PSBs system assists the enhancement of NH4Br dissociation and therefore increases the protonation process in the system. The highest ionic conductivity obtained for CMC−NH4Br containing with 25 wt. % NH4Br was achieved at 1.12 x 10-4 Scm-1 and improved to 3.31 x 10-3 Scm-1 when EC was added in PSBs system. The ionic conductivity-temperature for PSBs system was found to obey the Arrhenius relationships where the ionic conductivity increases with temperature. The solid-state proton batteries were assembled with the formation of Zn + ZnSO4.7H2O || highest conducting PSBs system || MnO2 and achieve with a maximum open circuit voltage (OCV) of 1.48 V at room temperature and showed good in rechargeablity performance with more than 10 cycles.


2021 ◽  
Vol 317 ◽  
pp. 426-433
Author(s):  
Siti Nurhaziqah Abd Majid ◽  
Afiqah Qayyum Ishak ◽  
Nik Aziz Nik Ali ◽  
Muhamad Zalani Daud ◽  
Hasiah Salleh

The development of biopolymer electrolytes based on methylcellulose (MC) has been accomplished by incorporating ammonium bromide (NB) to the polymer-salt system. The biopolymer electrolytes were prepared via solution-casting method. The conductivity and permittivity characteristics of the material were studied. The biopolymer-salt complex formation have been analysed through Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The conductivity of the sample was measured by EIS HIOKI. Upon addition of 20 wt.% of NB, highest conductivity of 3.25×10-4 μScm-1 was achieved at ambient temperature. The temperature dependence of the biopolymer electrolytes exhibit Arrhenius behaviour. This result had been further proven in FTIR study.


2021 ◽  
Vol 18 (38) ◽  
pp. 137-148
Author(s):  
Alvaro ARRIETA

Background: Solid biopolymer electrolytes are a type of material with high technological potential used in the development of solar cells, batteries, fuel cells, among others, due to their biodegradable nature and low environmental impact. Aim: This study aimed to evaluate the effect of the botanical origin of the starch used to prepare solid biopolymeric electrolyte films on its electrochemical and thermal properties and to establish the variations in thermal decomposition temperatures and redox potentials depending on the botanical origin of the starch used. Methods: Films of solid biopolymer electrolyte were made by thermochemical synthesis processes using corn starch, cassava starch, potato starch, glycerol, polyethylene glycol, and glutaraldehyde as plasticizers and lithium perchlorate salt. The synthesis solutions were taken to an oven at 70 °C for 48 hours. The films were characterized electrochemically by cyclic voltammetry using a dry electrochemical cell and thermally by differential scanning calorimetry and thermogravimetric analysis. Results and Discussion: The results showed that the electrochemical behavior of the films was similar in terms of registered redox processes. However, the potential values of the oxidation and reduction were different, as are the stability and intensity of the processes. On the other hand, the thermal analysis allowed establishing two decomposition processes in each of the films studied; the first process was due to dehydration and depolymerization phenomena in the films. The temperatures recorded were 59.0 °C, 58.9 °C, and 89.9 °C for potato starch, cassava starch, and corn starch films. The second process evidenced the thermal decomposition at different temperatures, 267.7 °C in potato starch films, 280.6 °C in corn starch films, and 287.1 °C in cassava starch films. Conclusions: It could be concluded that the botanical origin of the starch used in the synthesis of solid biopolymer electrolyte films affects its behavior and electrochemical and thermal stability.


2012 ◽  
Vol 724 ◽  
pp. 89-92
Author(s):  
Ji Wei Li ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Xian Hong Li

The blend films of ungelatinized and gelatinized starch/polyvinyl alcohol (PVA) were prepared by solution casting method. Their morphologies and thermal properties were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). A droplet phase was observed in the blends containing ungelatinized starch and a laminated phase was observed in the blends containing gelatinized starch. For both ungelatinized and gelatinized starch/PVA blends the melting temperature (Tm) (210230) of PVA was detected, and the Tm of gelatinized starch/PVA blends was higher than that of the ungelatinized starch/PVA blends. TGA results showed that over the rst 300 the weight loss for ungelatinized starch/PVA blends was higher than that for gelatinized starch/PVA blends, however the gelatinized starch/PVA blends showed the greater weight loss after scanning up to 400. Different morphologies and thermal properties of two types of blends were attributed to the different hydrogen bonding interactions between starch and polyvinyl alcohol.


Sign in / Sign up

Export Citation Format

Share Document