Study on Properties of Fresh and Hardened Slag Cement Paste

2010 ◽  
Vol 113-116 ◽  
pp. 2283-2286
Author(s):  
Ming Zhang ◽  
Han Lu ◽  
Feng Xing ◽  
Shu Ping Wang

The paper studied effect of blast-furnace slag on rheology and hydration properties of blended cement paste. Rheology of blended cement paste with polycarboxylic series (PCS) and sulphamate series (SMS) superplasticizer is tested, appraised effect degree of the dosage and fineness of slag in blended cement by saturation dosage of superplasticizer, fluidity and gradual loss of fluidity. For hardened paste, the study tested development of strength and hydration products, activation effects of gypsum and sodium sulfate, analyzed macro mechanical behavior and micro structure of blend cement made from slag.

2008 ◽  
Vol 385-387 ◽  
pp. 625-628
Author(s):  
Sang Hyun Lee ◽  
Han Seung Lee

Life span of structures made with concrete was shortened by carbonation. This phenomenon makes pH in concrete lower. If pH value in concrete become below 10, rebar in concrete begin to be corroded. This pH value was effected by quantity of Ca(OH)2 that depends on cement types, hydration reaction and carbonation time. In this study, pH value and quantity of Ca(OH)2 in mortar which has blast furnace slag were tested according to hydration and carbonation time. As a test result, the more cement has blast furnace slag (BFS) and the longer carbonation time last, the lower pH value in mortar has. And using this quantitative analysis result of pH and Ca(OH)2, it may be used effectively when service life considering carbonation is predicted using FEMA.


2002 ◽  
Vol 17 (2) ◽  
pp. 62-65 ◽  
Author(s):  
Li Dong-xu ◽  
Chen Lin ◽  
Xu Zhong-zi ◽  
Luo Zhi-min

2008 ◽  
Vol 45 (6) ◽  
pp. 336-344 ◽  
Author(s):  
Jong-Taek Song ◽  
Hyo-Sang Park ◽  
Seung-Ho Byun ◽  
Dong-Woo Yoo

Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 9
Author(s):  
Joseph ◽  
Al-Bahar ◽  
Chakkamalayath ◽  
Al-Arbeed ◽  
Rasheed

One of the major concerns of concrete industries is to develop materials that consume less natural virgin resources and energy to make sustainable construction practices. Efforts have been made and even implemented to use the waste/by product materials such as fly ash, slag, silica fume, and natural pozzolana as a partial or complete replacement for Portland cement in concrete mixtures. The deterioration of concrete structures in the existing hot and cold climates of Gulf Cooperation Council countries, along with chloride and sulphate attack, demands the use of pozzolanic materials for concrete construction. Volcanic ash incorporated cement based concretes are known for its better performance in terms of strength and durability in harsh marine environments. Understanding the cement hydration process and characterizing the hydration products in microstructural level is a complex and interdependent process that allows one to design complex mix proportions to produce sustainable concrete materials. In this paper, the early and late age hydration behavior along with micro- and pore structure of cement paste samples prepared with locally available ordinary Portland cement (OPC) and volcanic ash (VA) obtained from Saudi Arabia was monitored using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric (TGA) and N2-Adsorption analysis. The hydration progress of cement paste samples with different combinations of OPC and VA (0%, 15%, 25%, and 35%) at a w/c ratio of 0.45 after 14, 28, and 90 days were discussed. The qualitative XRD and SEM of cement paste samples showed no new phases were formed during the course of hydration. The disappearance of portlandite with increase in VA content was due to both pozzolanic effect and dilution effect. This was further confirmed quantitatively by the TGA observations that the samples with VA contain less Ca(OH)2 compared to the control specimens. N2 adsorption experiments after 90 days of curing showed larger hysteresis as the VA content increases. The studies show that the incorporation of volcanic ash certainly contributes to the generation of C-S-H and hence the cement hydration progress, especially in the later ages through pozzolanic reactions. A 15–25 % volcanic ash blended cement paste samples showed compact and denser morphological features, which will be highly detrimental for the durability performances.


2019 ◽  
Vol 955 ◽  
pp. 62-67
Author(s):  
Lukáš Procházka ◽  
Jana Boháčová

Alkali substances are present in cements used as a binder in concrete only in a minimum content. The most known process that alkali causes is the alkali-silica reaction. In this reaction, the alkali contained in the cement or supplied from the outside with an inappropriately selected aggregate containing amorphous SiO2. This reaction results in the development of hydration products, resulting in an increase in the volume of the original components, which can cause a breakage of the concrete structure and subsequent disintegration. The range of alkali-silica reaction can be reduced by the use of a suitable aggregate or the use of Type II admixtures which are characterized by pozzolanic or latently hydraulic activity. These admixtures react with alkali and then no longer react with the amorphous SiO2 contained in the aggregate. Alkalis also affect other properties of concrete such as basic physical-mechanical properties, frost resistance and pH.In the experimental part the pH values were compared between mixtures of Portland cement and alkaline activated blast furnace slag using slag aggregate from the heap Koněv.


Sign in / Sign up

Export Citation Format

Share Document