Fabrication and Properties of 1-3-2 Piezoelectric Composites

2010 ◽  
Vol 123-125 ◽  
pp. 77-80
Author(s):  
Shi Feng Huang ◽  
Dong Yu Xu ◽  
Jun Chang ◽  
Ya Mei Liu ◽  
Xin Cheng

In this paper, the 1-3-2 piezoelectric composites were fabricated by the cut-filling technique using P(MN)ZT piezoelectric ceramic as functional materials and polymer as matrix. The effects of ceramic volume fraction on the electrical properties of the composites were studied. The results indicate that as the ceramic volume fraction increases, the piezoelectric stain factor d33 increases evidently, while the piezoelectric voltage factor g33 decreases. Besides, the planar electromechanical coupling factor Kp and mechanical quality factor Qm of the composite are also less than those of the pure ceramic, while the thickness electromechanical coupling factor Kt is larger than that of the ceramic.

2009 ◽  
Vol 421-422 ◽  
pp. 381-384
Author(s):  
Rungnapa Tipakontitikul ◽  
Amporn Kamonlert ◽  
Sukum Eitssayeam ◽  
Anuson Niyompan

PZT-PMN ceramic system with presence of MnO2 contents were proposed and prepared using conventional sintering method as for piezoelectric transformer application. Phase formation and several dielectric and piezoelectric parameters were studied as a function of MnO2 concentration. The x-ray diffraction study revealed the tetragonal symmetry for all samples with MnO2 doping. To determine polarization, the P-E hysteresis loop were produced and the results indicated that entering of Mn4+ ions in the ceramic structure created large amount of oxygen vacancies and the consequent was observed as displacement of the loops to E axis. The obtained optimum parameter are d33 = 119 pC/N, kp = 0.207, Qm = 1669, tan = 0.0101, Pr = 20 μm/cm2 and Ec = 10 kV/cm.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 868
Author(s):  
Juhyun Yoo ◽  
Jonghyun Lee

In this paper, (Na,K)1−xLi.x(Nb,Sb)O3–(Bi,Na)(Sr)ZrO3–BaZrO3 ceramics were fabricated with x(= Li) substitution by two-step sintering method, and their physical characteristics were investigated. When Li substitution was added to the ceramics, piezoelectric constant (d33) and electromechanical coupling factor (kp) were rapidly reduced. However, mechanical quality factor (Qm) was enhanced. For the KNN-BNZ((K,Na)(Nb)O3–(Bi,Na)(Sr)ZrO3) ceramics with Li(x) = 0 substitution, the best physical properties of d33 = 300 [pC/N], kp = 0.40, Qm = 33 and dialectic constant (εr) = 2430 were shown, respectively. Additionally, the KNN-BNZ ceramics with Li(x) = 0.02, the d33 of 246[pC/N], the kp of 0.37, the Qm of 42 and the εr of 2090 appeared, which were suitable for the low-loss piezoelectric actuator.


2011 ◽  
Vol 306-307 ◽  
pp. 301-304
Author(s):  
Min Sun ◽  
Hua Wang ◽  
Shi Feng Huang ◽  
Xin Cheng

1-3 polymer-based piezoelectric composites were fabricated using epoxy as matrix by the cut-filling method. The influences of shape parameter on properties of the piezoelectric composite, which include the unit cross-sectional area and the aspect ratio w/t were analyzed. The results indicate that with the increasing of the unit cross-sectional area, the quality factor valueQmincreases and the hydrostatic piezoelectric voltageghincreases and then goes down rapidly while the PMN volume fractionφ(PMN) is kept under the 50%. When theφ(PMN) is 60%,ghis decreased. The trend of the hydrostatic figures of meritdh·ghis similar withghas the change of the unit cross-sectional area, but the value is different. In the 60% PMN volume fraction, the optimal value of thedh·ghis chosen. With the increasing of thew/t, the hydrostatic pressure sensitivityMh, thedh·ghvalues and theQmvalues are all decreased rapidly, and the thickness electromechanical coupling factorktis increased. In other words, the test results show that the smaller of unit cross-sectional area and thinner of thickness, the more helpful for frequency bandwidth and sensitivity when it is used in transducer.


2012 ◽  
Vol 05 (02) ◽  
pp. 1260013
Author(s):  
TAKESHI KIMURA ◽  
SHU YIN ◽  
TAKATOSHI HASHIMOTO ◽  
ATUSHI SASAKI ◽  
YUICHI TOKANO ◽  
...  

High purity ( Ba 1-x Ca x)( Ti 1-y Zr y) O 3((x,y)=(0.00,0.00)–(0.50,0.50)) were synthesized by a composite-hydroxide-mediated approach at 200°C using a sealed tube with a rolling system. The powders with an average size of 50 nm in diameter and narrow size distribution were produced. The highest electromechanical coupling factor k r was 36.1% ((x,y) = (0.05,0.03)) and highest mechanical quality factor Q m was 256 ((x,y) = (0.11,0.13)).


2012 ◽  
Vol 487 ◽  
pp. 770-774
Author(s):  
Wei Ye Chen ◽  
Lan Zhu ◽  
Peng Yi Liu ◽  
Cai Ping Lin ◽  
Hao Jian Tu

The effects of NiO-doping on the microstructure and piezoelectric properties of PMSZT ceramics were investigated. The experimental results indicate that pure perovskite structure was obtained in the doping range. With the increasing of doping amounts, phases shift from tetragonal phase to rhombohedral phase. The mechanical quality factor (Qm) , Dielectric constant (εr) , electromechanical coupling factor (Kp) and piezoelectric constant (d33) increase with the increasing of doping amounts and then decrease, whereas, dielectric loss (tanδ) decrease and then increase. The ceramics with doping amount of 0.1wt.% sintered at 980 °C have the optim properties of Qm=1345, εr=1853, Kp=0.62, d33=375 and tanδ=0.21%。


2015 ◽  
Vol 08 (05) ◽  
pp. 1550049 ◽  
Author(s):  
Vitaly Yu. Topolov ◽  
Christopher R. Bowen ◽  
Paolo Bisegna ◽  
Anatoly E. Panich

The influence of the aspect ratio and volume fraction of ferroelectric ceramic inclusions in a 0–3 matrix on the hydrostatic parameters of a three-component 1–3-type composite is studied to demonstrate the important role of the elastic properties of the two-component matrix on the composite performance. Differences in the elastic properties of the 0–3 matrix and single-crystal rods lead to a considerable dependence of the hydrostatic response of the composite on the anisotropy of the matrix elastic properties. The performance of a 1–0–3 0.92 Pb ( Zn 1/3 Nb 2/3) O 3–0.08 PbTiO 3 SC/modified PbTiO 3 ceramic/polyurethane composite suggests that this composite system is of interest for hydroacoustic applications due to its high hydrostatic piezoelectric coefficients [Formula: see text] and [Formula: see text], squared figure of merit [Formula: see text], and electromechanical coupling factor [Formula: see text].


2020 ◽  
Vol 12 (2) ◽  
pp. 237-243
Author(s):  
So Won Kim ◽  
Yong Jeong Jeong ◽  
Hee Chul Lee

This study investigates the effects of the Zn/Ni composition ratio and doping materials on the piezoelectric properties of PZNN-PZT ceramics for the fabrication of piezoelectric ceramics with excellent characteristics. A soft relaxor was used to improve the electrical characteristics and sinterability. The ceramics were fabricated with a base composition ratio of 0.13Pb((Zn1–xNix)1/3Nb2/3)O3–0.87Pb(Zr0.5Ti0.5)O3. The columbite phase was formed by reacting NiO and Nb2O5, which have low reactivity, as the first calcination, and the columbite precursor method was applied for the second calcination with PbO. Although the pellet was produced by sintering at a relatively low temperature of 950 °C, we obtained a dense ceramic with a high density of 7.9 g/cm3 . To improve the quality factor in the composition with a Ni/(Ni + Zn) molar ratio of 0.1, the doping materials MnO2, Fe2O3, CuO, and Bi2O3 were added and their properties were confirmed. Pure perovskite phases were formed in the ceramics of all compositions and doping materials. In particular, the PZNN-PZT ceramics doped with 0.3 wt% MnO2 showed a piezoelectric coefficient of 348 pC/N, electromechanical coupling factor of 0.59, mechanical quality factor of 345, and Curie temperature of 316 °C, which are excellent piezoelectric characteristics.


2011 ◽  
Vol 687 ◽  
pp. 228-232
Author(s):  
Yong Jie Zhao ◽  
Yu Zhen Zhao ◽  
Rong Xia Huang ◽  
Rong Zheng Liu ◽  
He Ping Zhou

(1-x) (K0.475Na0.475Li0.05)(Nb0.975Sb0.025)O3-xmolBiFeO3 (x=0, 0.002, 0.004, 0.006, 0.008) doped with 0.8mol%CuO lead-free piezoelectric ceramics were prepared by the solid state reaction technique. X-ray diffraction patterns suggested that all the ceramics presented perovskite structure. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. The ceramic (x=0.002) near room temperature exhibited excellent electrical properties (piezoelectric constant d33=172pC/N, planar electromechanical coupling factor kp=0.43, and dielectric constant =418). A relatively high mechanical quality factor (Qm=200) was also obtained in this particular composition. All these results revealed that this system might become a promising candidate for lead-free piezoelectric materials.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1406 ◽  
Author(s):  
Yu Fan ◽  
Manuel Collet ◽  
Mohamed Ichchou ◽  
Olivier Bareille ◽  
Lin Li

A novel metrics termed the ‘wave electromechanical coupling factor’ (WEMCF) is proposed in this paper, to quantify the coupling strength between the mechanical and electric fields during the passage of a wave in piezoelectric composites. Two definitions of WEMCF are proposed, leading to a frequency formula and two energy formulas for the calculation of such a factor. The frequency formula is naturally consistent with the conventional modal electromechanical coupling factor (MEMCF) but the implementation is difficult. The energy formulas do not need the complicated wave matching required in the frequency formula, therefore are suitable for computing. We demonstrated that the WEMCF based on the energy formula is consistent with the MEMCF, provided that an appropriate indicator is chosen for the electric energy. In this way, both the theoretical closure and the computational feasibility are achieved. A numerical tool based on the wave and finite element method (WFEM) is developed to implement the energy formulas, and it allows the calculation of WEMCF for complex one-dimensional piezoelectric composites. A reduced model is proposed to accelerate the computing of the wave modes and the energies. The analytical findings and the reduced model are numerically validated against two piezoelectric composites with different complexity. Eventually an application is given, concerning the use of the shunted piezoelectric composite for vibration isolation. A strong correlation among the WEMCF, the geometric parameters and the energy transmission loss are observed. These results confirm that the proposed WEMCF captures the physics of the electromechanical coupling phenomenon associated with the guided waves, and can be used to understand, evaluate and design the piezoelectric composites for a variety of applications.


2007 ◽  
Vol 280-283 ◽  
pp. 175-180
Author(s):  
Chun Huy Wang

The new piezoelectric ceramic of PbTiO3-PbZrO3-Pb(Mg1/3Nb2/3)O3 -Pb(Zn1/3Nb2/3)O3 with composition close to the morphotropic phase boundary was studied. The dielectric and piezoelectric properties of Pb0.96Sr0.04[(Zr1-yTiy)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3 were investigated, the composition range examined are 0.47 £ y £ 0.57. From the results of XRD and piezoelectric measurement, it is supposed that the composition with y = 0.51 corresponds to M.P.B. between tetragonal and pseudocubic perovskite. Some developed phenomena or models are introduced and take it to interpret well. After optimal choice of these conditions, the planar coupling factor close to 0.65, mechanical quality factor Qm close to 75, the longitude wave velocity close to 4100 m/s and the poled dielectric constant close to 2600 can be approached in this study.


Sign in / Sign up

Export Citation Format

Share Document