The Finite Element Analysis and Optimization of Micro Free Piston Swing Engine’s Strain Interference

2010 ◽  
Vol 139-141 ◽  
pp. 938-942
Author(s):  
Ji Jing Lin ◽  
Yan Hong Chen

MFPSE, Micro Free Piston Swing Engine, is a new type of miniature internal combustion engine based on the working principle of two-stroke swing engine. The successful development and operation of this type of miniature internal combustion engine provide important significance for the miniaturization of the internal combustion engine, and provide a number of important research theory, computation method and experimental data. In this article, according to the work characteristics and co-ordination requirements of MFPSE (Micro Free Piston Swing Engine), whose strain interference is analyzed using finite element analysis software, the problems and interference of the center pendulum and cylinder is found evidently. The data of analysis provides theory basis for the MFPSE’s structural optimization, and is critical to improve the performance of MFPSE.

2015 ◽  
Vol 1092-1093 ◽  
pp. 483-486
Author(s):  
Yan Hui Zhao ◽  
Sheng Hui Peng ◽  
Hong Li

In recent years, the computer software and technology and the rapid development of finite element theory promote the internal combustion engine dynamic analysis process, greatly improving the application of the internal combustion engine complex parts of the finite element analysis of the efficiency of the precision and reliability of.CAE technology in engine design in the field of eventually allow designers to design modern engine with high performance, low emission, low fuel consumption and low noise, light weight and miniaturization.


2013 ◽  
Vol 734-737 ◽  
pp. 2802-2806
Author(s):  
Bing Xia Liu ◽  
Ping Sun

The cylinder head is one of the most important and complex parts in the internal combustion engine. In this paper, in view of three-dimensional finite element applications covered in the cylinder head, it mainly discusses the development trend both at home and abroad from the cylinder head finite element model establishment, cylinder head boundary conditions determination and cylinder head finite element computation, which application of three-dimensional finite element in study of cylinder head on temperature field simulation, the stress analysis, the machinery load and hot load, as well as the coupling analysis of multi-physical fields and multi-parts.


2013 ◽  
Vol 631-632 ◽  
pp. 978-981 ◽  
Author(s):  
Yun Jing Jiao ◽  
Man Qun Lin ◽  
Xiu Yan Zhai ◽  
Mei Na Ji

The internal combustion engine should be enlarged the cylinder diameter for the Power requirements. In order to ensure the engine to work normally, it is needed to compute the strength of the connecting rod. Through adopting ANSYS software, the three-dimensional computational model is constructed, and the stress analysis is carried out. We can learn the stress field of process of deformation. Through calculation the stress and strength of connecting rod are derived. Using the stress which was calculated from ANSYS we can decide the Safety of connecting rod. In general, the analysis is meaningful to optimize the design of connecting rod.


2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


Author(s):  
Serhiy Buriakovskyi ◽  
Borys Liubarskyi ◽  
Artem Maslii ◽  
Danylo Pomazan ◽  
Tatyana Tavrina

This article describes one of the possible ways for improving the energy efficiency of shunting diesel locomotives. It means a replacing a traditional traction electric transmission with a diesel generator set with a hybrid transmission with a free-piston internal combustion engine and a linear generator. The absence of a crankshaft in an internal combustion engine makes it possible to reduce thermal and mechanical losses, which, in turn, leads to an increase in the efficiency of traction electric transmission of the diesel locomotive.


2014 ◽  
Vol 945-949 ◽  
pp. 2810-2814
Author(s):  
Jing Liu ◽  
Jing Tao Han ◽  
Jin Chun Deng

Turbine Air Powered Engine (TAPE) is a new type engine which has the character of zero emission, no pollution. Mathematical models of TAPE were established by the method of exergy analysis, the overall exergy and the exergy loss after reduced pressure with throttling were simulated in this paper. The results show that the maximum exergy loss of system is 60% during the process of reduced pressure with throttling, so the type of throttling decompression is not suitable for the system of TAPE which has bigger pressure reducing ratio. The results of bench test indicate that output power increases with the increase of inlet pressure within the scope of less pressure, and the regulation is similar to the simulating result. In the hybrid system of pneumatic internal-combustion engine, the measure which the air powered system is used in low-speed stage and the internal combustion engine powered system is adopted in high-speed stage can effectively solve the problem which the fuel consumption of the internal combustion engine is too bigger at low speed.


2007 ◽  
Vol 342-343 ◽  
pp. 829-832
Author(s):  
J.M. Luo ◽  
L. Zheng ◽  
X.H. Shi ◽  
Yao Wu ◽  
Xing Dong Zhang

Stress concentration is one of the main mechanical problems leading to the failure of clinical application for osteointegrated implant of percutaneous osteointegrated prosthesis, which is especially marked for higher amputated leg prosthesis. Traditionally design was composed of only the distal part. To improve the biomechanical safety, a new design with the lag part similar to the lag screw was introduced. Based on CT scan data, relatively accurate model of femur for finite element analysis (FEA) were obtained. The FEA results with the new implant demonstrated that compared to traditional design, the declination of bone stress peak ranged from 15.68% to 28.67%, perpendicular deformation from 34.73% to 72.16%, and maximal stress of implant from 14.51% to 23.36% with the increasing of loads from 3750N to 2000N. So the new design of osteointegrated implant would be more secure mechanically, in the case of higher amputated leg attachment.


Sign in / Sign up

Export Citation Format

Share Document