Multistage Cold Extrusion Process and Forming Rules of Shaft Parts Used in Gearbox

2010 ◽  
Vol 148-149 ◽  
pp. 683-687
Author(s):  
Dong Sheng Ji ◽  
Jun Song Jin ◽  
Wei Jie Ma ◽  
Ju Chen Xia ◽  
Han Guan Xia ◽  
...  

The production method of a driving axles used in gearbox is presented in this paper. A five-stage cold extrusion technology for forming the driving axle was made. First, simulations based on thermal-mechanical coupling finite element model were performed with Deform_2D. During the forming process, the concave appeared at the shaft end. And its formation mechanism was studied. Then the forming rules were obtained. Corresponding experiments were carried out and quality forging was achieved. Simulation and experimental results both indicate that the five-stage cold extrusion technology was feasible.

Cast Metals ◽  
1991 ◽  
Vol 4 (2) ◽  
pp. 89-97 ◽  
Author(s):  
M. R. Tadayon ◽  
R. W. Lewis ◽  
D.T. Gethin

2014 ◽  
Vol 621 ◽  
pp. 195-201
Author(s):  
Surangsee Dechjarern ◽  
Maitri Kamonrattanapisut

Sheet metal deep-draw die is primarily constructed with draw bead, which is then modified based on trial and error to obtain a successful forming without splitting. This work aims at a robust design of forming die using numerical analysis and the Taguchi method. A three dimensional elastoplastic finite element model of a sheet metal forming process of SPCEN steel has been successfully developed using the material flow stress obtained from the modified Erichsen cup test. The model was validated with the actual forming experiment and the results agreed well. The influence of draw bead parameters on splitting and thinning distributions were examined using the Taguchi method. Four parameters, namely the friction coefficient, draw bead height, radius and shoulder radius were investigated. The Taguchi main effect analysis and ANOVA results show that the height and shoulder radius of the draw bead are the most important factor influencing the thinning distribution. Applying the Taguchi method and using the minimum thinning percentage as the design criteria, the optimum die design was identified as height, radius, shoulder radius and the friction coefficient of 4, 8, 8 mm and 0.125 respectively. The verified finite element model using the optimum die design was conducted. The predicted Taguchi response was within 5.9% from finite element analysis prediction. The improvement in the reduction of thinning percentage was 22.35%.


2011 ◽  
Vol 704-705 ◽  
pp. 674-679
Author(s):  
Dan Xia ◽  
Bin Shi Xu ◽  
Yao Hui Lv ◽  
Yi Jiang ◽  
Cun Long Liu

With considering the Marangoni convection in the molten pool on plasma direct metal forming process, a finite element model posed to describe and reflect the flow in the molten pool. Results of temperature distribution modeling prepared by plasma direct metal forming process of metal powders in an Ar environment were numerically obtained and compared with experimental data. Powders of Fe314 and base plates of R235 steel were taken as sample materials. In the experiment a multi-stream nozzle capable of delivering metal powder coaxially with the plasma arc was used. The model revealed that the velosity of the front part of the pool is a little slower than aft part. Marangoni convection reinforced the convection and enhanced the heat transfer. Profile of the model is the same as the experimental data. This allows us to conclude that the model can be applied for preselecting the process parameters. Keywords: plasma, rapid forming, temperature field, Marangoni convection.


2015 ◽  
Vol 775 ◽  
pp. 219-223
Author(s):  
Wan Mian Yang ◽  
Yuan Xin Luo ◽  
Zhi Fang Liu ◽  
Ru Xu Du

Multi-point forming process has been developed to shape the sheet metal with bidirectional curvature. However, the forming force usually climbs too high so that the dimension of the forming machine should be designed to meet it. To solve this problem, the multi-point incremental forming (MPIF) process was proposed in this paper. First, the principle of this new forming process was introduced. Then, the experimental device was designed. Next, the MPIF process was simulated by a finite element model. The forming effects including displacements, thickness, and curvatures were visualized and discussed in detail. It was found that there is no obvious thickness change during the forming process. The advantage of this forming process is that the shape of the sheet metals adaptable and controllable with small forming force.


2013 ◽  
Vol 411-414 ◽  
pp. 3056-3059
Author(s):  
Zhi Qiang Li ◽  
Han Xun Lv ◽  
Bing Dong Liu ◽  
Zhang Yi Yu

In order to increase the useful life of sleeve, improve the organizational structure and reduce costs, ZA alloy materials can be used as a raw material using cold extrusion technology for production. The main content of this paper is simulating the change rules of the equivalent plastic strain, the equivalent stress and the flow in the forming process of ZA alloy in different extrusion speed and friction coefficient condition by finite element technology, making a contrastive study with the extrusion theory, and finding out the most appropriate extrusion processing parameters. The results not only provide sufficient theatrical support for the cold extrusion process of sleeve of ZA alloy, but also offer some new thoughts for the design of extrusion mold.


Sign in / Sign up

Export Citation Format

Share Document