Rapid Manufacturing and Remanufacturing System Based on Robotic GMAW

2010 ◽  
Vol 156-157 ◽  
pp. 1626-1629 ◽  
Author(s):  
Zi Qiang Yin ◽  
Guang Jun Zhang ◽  
Hui Hui Zhao ◽  
Lin Wu

This paper describes a novel rapid manufacturing and remanufacturing system based on robotic gas metal arc welding. If worn parts are maintainable, this system play a repairer role; if worn parts are unfit to remain in service, this system play a manufacturer role. This system works in ‘modeling - slicing - stacking’ principle. First, Detecting and building three-dimensional models of damaged zone by structured light. Second, Slicing established three-dimensional model in layers with some thickness. Third, planning robotic tool path to get optimumwelding path and parameters. Finally, executing remanufacturing task with robotic GMAW stacking layer by layer. This system remanufactures parts in human - robot interactive way. Take a half cylinder shell as worn part, experiments are conducted. Results show the mean error of surface smoothness is less than 0.5mm.

2021 ◽  
Vol 2045 (1) ◽  
pp. 012009
Author(s):  
F Wang ◽  
Z Q Yin ◽  
X H Sun ◽  
X D Gong ◽  
L Kou ◽  
...  

Abstract Take the wear parts of coupler knuckle as an example, the “Modeling—Slicing — Stacking” mode remanufacturing process is studied. First, the 3D model of the of the worn coupler knuckle surface is acquired by structured light 3D detection. The remanufacturing model of the failure part is built by Boolean operation between the original model and the acquired 3D model. Second, the user can slice layer of the remanufacturing model according to the remanufacturing stacking parameters. The zone that surrounded by the contour of each sliced layer is the robotic GMAW remanufacturing stack region. Third, the robotic GMAW remanufacturing path is planed within the region mentioned above and the executable program is generated to carry out the remanufacturing task layer by layer. Moreover, the worn coupler knuckle was repaired by adopting Robotic GMAW Process. The mechanical performances of component were tested, the results indicate that the remanufactured coupler knuckle satisfying the operating requirements.


1991 ◽  
Vol 113 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jong Cheon Park ◽  
Kunwoo Lee

An interactive computer program to design a mold cavity with the proper rigging system has been developed. In addition to the pattern and the risers generated as described in Part 1 of this work, the various components of the gating system are generated in complete three-dimensional models by a rational approach. Then they are laid interactively by the user, and united together with the pattern and the risers to result in the three-dimensional model of the mold assembly. Finally, the vents and the mold box are constructed following the user’s interactive specification and then the mold cavity is completed in a three-dimensional geometric model by subtracting the mold assembly and the vents from the mold box. The three-dimensional model of a mold cavity is useful for many related applications such as the solidification simulation for mold evaluation and the NC tool path generation for mold production.


2011 ◽  
Vol 49 (4) ◽  
pp. 326-327 ◽  
Author(s):  
Karen A. Eley ◽  
Robin Richards ◽  
Dermot Dobson ◽  
Alf Linney ◽  
Stephen R. Watt-Smith

Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


2021 ◽  
Vol 20 (7) ◽  
pp. 48-61
Author(s):  
Pavel V. Chistyakov ◽  
Ekaterina N. Bocharova ◽  
Ksenia A. Kolobova

This article provides a detailed account of the process of scanning, post-processing and further manipulation of three-dimensional models obtained with structured light scanners. Purpose. The purpose of the study is determined by the need for national archaeologists to learn the methods of three-dimensional modeling for the implementation of scientific research corresponding to international standards. Unfortunately, this direction in national archaeology began to develop in a relatively recent time and there is a lag in the application of three-dimensional modeling of national archaeology compared to the world level. Results. Any archaeological, experimental or ethnographic artifact can be used for three-dimensional scanning. To perform post-processing of three-dimensional models it is necessary to carry out primary scanning of an artifact by one of the existing algorithms. The algorithm for creating models, their positioning, simplification, saving in various formats and export is described. The main sequence of 3D models post-processing includes: processing of groups of scanned projections (their cleaning and alignment), creation of artifact model and processing/rectification of the resulting model using special software. Conclusion. As a result of correct implementation of the algorithm, the researcher receives a scaled model completely corresponding to the original artifact. Obtaining a scalable, texture-free three-dimensional model of the artifact, which fully corresponds to the original and exceeds a photograph in the quality of detail transfer, allows a scientist to conduct precise metric measurements and any procedures of non-invasive manipulation of the models. The ability to access a database of three-dimensional models of archaeological collections greatly simplifies the work of archaeologists, especially in situations when country borders are closed.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940036
Author(s):  
Juan Pu ◽  
Shan Wu ◽  
Qingxian Hu ◽  
Yuxin Wang

A three-dimensional numerical model of double-arc in tandem gas metal arc welding (GMAW) was established based on the theory of arc physics, momentum equation, energy equation, continuous equation and Maxwell equations. The effects of different welding current on temperature field, velocity field and pressure field on the surface of workpieces were investigated. The results showed that the maximum values of arc temperature, arc plasma velocity and arc pressure on workpieces surface were increased with the increasing welding current. These maximum values occurred at the tip of double-wire. The current density and axial deflection angle of coupling arc were increased following the increasing welding current.


Author(s):  
J. Hu ◽  
H. L. Tsai

This article analyzes the dynamic process of groove filling and the resulting weld pool fluid flow in gas metal arc welding of thick metals with V-groove. Filler droplets carrying mass, momentum, thermal energy, and sulfur species are periodically impinged onto the workpiece. The complex transport phenomena in the weld pool, caused by the combined effect of droplet impingement, gravity, electromagnetic force, surface tension, and plasma arc pressure, were investigated to determine the transient weld pool shape and distributions of velocity, temperature, and sulfur species in the weld pool. It was found that the groove provides a channel which can smooth the flow in the weld pool, leading to poor mixing between the filler metal and the base metal, as compared to the case without a groove.


2020 ◽  
Vol 75 ◽  
pp. 04016 ◽  
Author(s):  
Ihor Hevko ◽  
Olha Potapchuk ◽  
Iryna Lutsyk ◽  
Viktorya Yavorska ◽  
Viktoriia Tkachuk

The authors present methods building and printing three-dimensional models for graphical reconstruction of historical architectural objects. Procedure sequence of the methods is exemplified through building the model of the Parochial Cathedral of St. Mary of the Perpetual Assistance of the 1950s. After analyzing and assessing the most popular specialized software means, the 3DS Max environment is chosen to build a three-dimensional model. Suggested software tools enable increased accuracy, speed and granularity of fixation of complex systems and expanded databases, providing efficient instruments to deal with bulk data and being relevant to new IT achievements. Sequence and content of operations for analytical and modeling cycles are substantiated. The cathedral model is built on the basis of archive photographs and drafts. The authors describe methods and the algorithm of procedures, principles of architectural and spacious modeling to recreate the architectural object. The three-dimensional model is built by applying a stereogram miniature of the destroyed Cathedral. Reconstruction of spacious configuration of the objects is based on parallax assessment of images. Stages of project implementation are determined. There are described methods of implementing modeling by 3DS Max tools and preparing the model for 3D printing in Cura.


Author(s):  
Mohammed Rajik Khan ◽  
Puneet Tandon

In order to machine multiple sculptured surfaces with reduced machining time and high accuracy of the machined parts, shape design of a customised multi-point rotary cutting tool needs to be evolved. In the present work, a novel design of a generic multi-profile form milling cutter is developed for machining various multiple sculptured surfaces. This article describes in detail the mathematical model to design an accurate three-dimensional geometry of a generic multi-profile form milling cutter. Use of non-uniform rational B-spline curve(s) and sweep surfaces enables to control the shape of cutting flutes of the generic multi-profile form milling cutter. The article also discusses the methodology to develop a variety of cutters lying in the same conceptual family of multi-profile form milling cutter. To physically visualise the cutter and to show one of the downstream applications once a three-dimensional model of the cutter is available, one of the multi-profile form milling cutters is fabricated. The proposed methodology offers an intuitive high-quality mathematical model for a generic family of multi-profile form milling cutters, which is different from the traditional three-dimensional models.


Sign in / Sign up

Export Citation Format

Share Document