Anti-Flushing Design for Continuous Circulation System

2010 ◽  
Vol 160-162 ◽  
pp. 768-772
Author(s):  
Ding Feng ◽  
Liu Li ◽  
Hai Xiong Tang

Proper wellbore pressure management is a critical part of the drilling practice, where static and dynamic fluid pressures are used to contain formation pressures and assure wellbore stability, to solve the problem; the anti-flushing device is has been developed. The anti-flushing device is designed to counter downhole pressure increase due to safety of narrow mud window and the key to fast drilling. Reasonable control anti-flushing device is the best way to solve the safety of narrow mud window and the key to fast drilling. This paper describes the anti-flushing device, which is run as an integral part of the drill string. The anti-flushing device has been built to operate the 8-1/2 "section of well drilling, keeping continuous loop, To avoiding annular cutting is sank into accumulation when the drill string were connected and the pump stopped, cleaning the small hole by maximum.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tianyi Tan ◽  
Hui Zhang ◽  
Xusheng Ma ◽  
Yufei Chen

Wellbore instability is a frequent problem of shale drilling. Accurate calculation of surge-swab pressures in tripping processes is essential for wellbore pressure management to maintain wellbore stability. However, cutting plugs formed in shale horizontal wells have not been considered in previous surge-swab pressure models. In this paper, a surge-swab pressure model considering the effect of cutting plugs is established for both open pipe string and closed pipe string conditions; In this model, the osmotic pressure of a cutting plug is analyzed. The reduction of cutting plug porosity due to shale hydration expansion and dispersion is considered, ultimately resulting in an impermeable cutting plug. A case study is conducted to analyze swab pressures in a tripping out process. The results show that, in a closed pipe condition, the cutting plug significantly increases the swab pressures below it, which increase with the decrease of cutting plug porosity and the increase of cutting plug length. Under the give condition, the swab pressure at the bottom of the well increases from 3.60 MPa to 8.82 MPa due to the cutting plug, increasing by 244.9%. In an open pipe string condition, the cutting plug affects the flow rate in the pipes and the annulus, resulting in a higher swab pressure above the cutting plug compared to a no-cutting plug annulus. The difference increases with the decrease of the porosity and the increase of the length and the measured depth of the cutting plug. Consequently, the extra surge-swab pressures caused by cutting plugs could result in wellbore pressures out of safety mud density window, whereas are ignored by previous models. The model proposes a more accurate wellbore pressure prediction and guarantees the wellbore stability in shale drilling.


2021 ◽  
Author(s):  
Scott William Petrie ◽  
Rick Doll

Abstract Continuous Circulation Systems (CCS) have been used in the past to help drill wells where interactions between the mud weight and theformation may increaserisks, thereby allowing the well to be drilledwithout encountering drilling problems or damaging the formation, whilst reaching total depth in the planned time. Previous systems have,however,relied on people working in the red zone. This paper discusses the process of making drill pipe connections, with continuous circulation,utilising a fully automatic deployment system to add value by removing the risk of people around the drill pipe during the connection, working in conjunction with other automated rig systems todeliver the advantages of continuously circulation over each connection. The continuous circulation subs are installed in every stand of drill pipe to be used in the drilled interval and facilitate circulation while the next stand is picked up and made up to the stump. A valve manifold is utilised to divert flow from the pumps to the subs, instead of the top drive, during the connection. During each connection, circulation is maintained down the drill string, from bit to surface, at drilling rates. Once the connection has been made the continuous circulation surface equipment is disconnected from the drill string allowing drilling to resume. After deploying the continuous circulation system on a number of geothermal projects, the results of using the system for top hole and intermediate sections suggest that while drilling with low rheology water-based mud systems,a high percentage of cuttings are returned to surface while the next stand of drill pipe is being picked up,limiting any hole loading and allowing the driller to increase the rate of penetration (ROP) through these sections. Fewer hole collapse issues were observed while drilling through volcanic tuff and ash, where wellbore stability is low due to poorly consolidated rock formations, thereby reducing non-productive time associated with stuck pipe and the costs of lost bottom hole assemblies (BHA's) and sidetracks. Most Geothermal projects work on very tight budgets and geothermal exploration costs need to be kept low. Improved drilling performance has improved the viability of these projects and increased the number of exploration wells that can be drilled in a campaign by reducing the days versus depth P90 estimate, that being the 90% probability of the rig matching the days v's depth curve predicted.


2021 ◽  
Vol 881 ◽  
pp. 33-37
Author(s):  
Wei Na Di

The application of nanomaterials in oil and gas fields development has solved many problems and pushed forward the development of petroleum engineering technology. Nanomaterials have also been used in wellbore fluids. Nanomaterials with special properties can play an important role in improving the strength and flexibility of mud cake, reducing friction between the drill string and wellbore and maintaining wellbore stability. Adding nanomaterials into the cement slurry can eliminate gas channeling through excellent zonal isolation and improve the cementing strength of cement stone, thereby facilitating the protection and discovery of reservoirs and enhancing the oil and gas recovery. This paper tracks the application progress of nanomaterials in wellbore fluids in oil and gas fields in recent years, including drilling fluids, cement slurries. Through the tracking and analysis of this paper, it is concluded that the applications of nanomaterials in wellbore fluids in oil and gas fields show a huge potential and can improve the performance of wellbore fluids.


2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


2021 ◽  
Author(s):  
Rahman Ashena ◽  
Farzad Ghorbani ◽  
Muhammad Mubashir ◽  
Mahdi Nazari Sarem ◽  
Amin Iravani

Abstract In 2017, a blowout and explosion occurred in a drilling oilwell in the Middle East. After drilling to the depth of 2,610 m, tripping was decided in order to change the bit. When the crew were pulling the drill string out of the hole with the drill-string being at the depth of 1332 m, blowout and explosion occurred. The well was a development well drilling almost horizontally (82 degrees inclination angle) into a highly-pressured gas-cap and oil pay-zone of the oilfield. In this work, following a brief explanation of the root causal factors of the incident, we give an account of the blowout control methods applied to put an end to the blowout. Both the top-kill method and the bottom-kill method by relief well drilling, were simultaneously implemented to control the blowout. Finally, the blowout was successfully controlled by the bottom-kill after 58 days. During top-kill operations, all equipment was cleared away and this contributed to proceeding to permanent abandonment immediately after the relief well success. Finally, the adverse effect of the blowout on the environment (HSE) was qualitatively discussed.


2020 ◽  
pp. 26-29
Author(s):  
T.Sh. Salavatov ◽  
◽  
Y.I. Safarov ◽  
S.A. Musayeva ◽  
◽  
...  

The paper makes an effort to specify the relaxation time of subsurface rocks composing the borehole wall during geothermal well drilling justifying theoretical and practical researches. To solve mentioned issues, a theory of dumping of pressure fluctuations in non-stationary motion of drilling mud in the circulation system of well, based on the data of change of pressure and time consumption is applied and as a result a calculation formula obtained. The method has been tested in the well No 245 in Muradkhanly area.


2010 ◽  
Vol 139-141 ◽  
pp. 2397-2400
Author(s):  
Chun Jie Han ◽  
Tie Yan

During exploitation of horizontal well drilling engineering, the problem of drill string failure is very serious, there are many reasons, and drill string vibrations are main reasons. In this paper drill string of horizontal well is object being studied. The models about various vibrations are set up. The vibration rule of drill string is obtained under different situation; the axial and lateral frequency of drill string vibration in free state is studied. The analysis of modal vibration of drill string is the basis of the analysis of harmonic vibration of drill string. The harmonic vibrations rules of drill string of horizontal well are studied. All sorts of resonance frequencies are obtained practicability. This study can prove basic method for optimizing drill tool of horizontal well and reducing drill string failure.


2020 ◽  
Author(s):  
Xian-Bin Huang ◽  
Jin-Sheng Sun ◽  
Yi Huang ◽  
Bang-Chuan Yan ◽  
Xiao-Dong Dong ◽  
...  

Abstract High-performance water-based drilling fluids (HPWBFs) are essential to wellbore stability in shale gas exploration and development. Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles. This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition, plugging and lubrication performances. Shale inhibition performance was studied by linear swelling test and shale recovery test. Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope (SEM) observation. Extreme pressure lubricity test was used to evaluate the lubrication property. Experimental results show that laponite has good shale inhibition property, which is better than commonly used shale inhibitors, such as polyamine and KCl. Laponite can effectively plug shale pores. It considerably decreases the surface area and pore volume of shale, and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm. Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string. Besides, laponite can reduce the fluid loss volume. According to mechanism analysis, the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.


2014 ◽  
Vol 50 (9-10) ◽  
pp. 583-587
Author(s):  
S. A. Zaurbekov ◽  
B. Z. Kaliev ◽  
M. Zh. Muzaparov ◽  
Zh. N. Kadyrov ◽  
A. V. Kochetkov

Sign in / Sign up

Export Citation Format

Share Document