Flow Control over a Circular-Cone-Cylinder by Unsteady Plasma Actuations

2010 ◽  
Vol 160-162 ◽  
pp. 933-938
Author(s):  
Jiang Nan Hao ◽  
Chao Gao ◽  
Yin Zhe Li

An experimental study of plasma duty-cycled actuation over slender forebodies is performed on a 20° circular-cone-cylinder model using a pair of Single Dielectric Barrier Discharge (SDBD) plasma actuators near the cone apex combined with a duty-cycle technique. The tests are carried out in a low-turbulence 3.0 m ×1.6 m low-speed wind tunnel at an angle of attack of 45°. The Reynolds number based on the cone base diameter is 50, 000. The frequency of the duty cycle is 10 Hz. The mechanisms of the unsteady excitations over various duty cycles of frequency 10 Hz are studied using ten Kulite pressure transducers mounted around a cross section of the cone forebody at angle of attack of 45°.The circumferential pressure distributions over a station on the cone forebody is measured by unsteady pressure tappings, Phase-locked averaged pressures are studied and compared with ensemble-averaged pressures.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jessica V. Jasien ◽  
Ye Emma Zohner ◽  
Sonia Kuhn Asif ◽  
Lindsay A. Rhodes ◽  
Brian C. Samuels ◽  
...  

AbstractThe optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates and duty cycles, to characterize IOP dynamics. Transient IOP fluctuations were measured and quantified in 7 eyes of 4 male rhesus macaques (NHPs) using the Konigsberg EO system (continuous at 500 Hz), 12 eyes of 8 NHPs with the Stellar EO system and 16 eyes of 12 NHPs with the Stellar IO system (both measure at 200 Hz for 15 s of every 150 s period). IOP transducers were calibrated bi-weekly via anterior chamber manometry. Linear mixed effects models assessed the differences in the hourly transient IOP impulse, and transient IOP fluctuation frequency and magnitude between systems and transducer placements (EO versus IO). All systems measured 8000–12,000 and 5000–6500 transient IOP fluctuations per hour > 0.6 mmHg, representing 8–16% and 4–8% of the total IOP energy the eye must withstand during waking and sleeping hours, respectively. Differences between sampling frequency/duty cycle and transducer placement were statistically significant (p < 0.05) but the effect sizes were small and clinically insignificant. IOP dynamics can be accurately captured by sampling IOP at 200 Hz on a 10% duty cycle using either IO or EO transducers.


1978 ◽  
Vol 21 (2) ◽  
pp. 295-308
Author(s):  
Terry L. Wiley ◽  
Raymond S. Karlovich

Contralateral acoustic-reflex measurements were taken for 10 normal-hearing subjects using a pulsed broadband noise as the reflex-activating signal. Acoustic impedance was measured at selected times during the on (response maximum) and off (response minimum) portions of the pulsed activator over a 2-min interval as a function of activator period and duty cycle. Major findings were that response maxima increased as a function of time for longer duty cycles and that response minima increased as a function of time for all duty cycles. It is hypothesized that these findings are attributable to the recovery characteristics of the stapedius muscle. An explanation of portions of the results from previous temporary threshold shift experiments on the basis of acoustic-reflex dynamics is proposed.


1994 ◽  
Vol 116 (1) ◽  
pp. 14-22 ◽  
Author(s):  
M. G. Dunn ◽  
J. Kim ◽  
K. C. Civinskas ◽  
R. J. Boyle

Time-averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row and the first-stage blade row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. These measurements were made at 10, 50, and 90 percent span on both the pressure and suction surfaces of the component. Stanton-number distributions are also reported for the second-stage vane at 50 percent span. A shock tube is used as a short-duration source of heated and pressurized air to which the turbine is subjected. Platinum thin-film gages are used to obtain the heat-flux measurements and miniature silicone-diaphragm pressure transducers are used to obtain the surface pressure measurements. The first-stage vane Stanton number distributions are compared with predictions obtained using a quasi-three dimensional Navier–Stokes solution and a version of STAN5. This same N–S technique was also used to obtain predictions for the first blade and the second vane.


1978 ◽  
Vol 100 (1) ◽  
pp. 15-21 ◽  
Author(s):  
E. Feder ◽  
P. N. Bansal ◽  
A. Blanco

This paper presents the results of an experimental and analytical investigation of the dynamic forces generated by a squeeze film bearing damper constrained to move in circular centered orbits. These orbits were mechanically produced in a specially designed, end sealed, test rig. Aircraft engine damper geometry and operating conditions were simulated. The effect of journal speed, oil viscosity, inlet pressure, and eccentricity ratio on the damper performance was studied. The pressure distributions about the journal were measured for each test condition by high-response diaphragm-type pressure transducers. These pressure profiles were numerically integrated to determine the force components of the squeeze film. Experimental results were compared to an analysis which is summarized in this paper and included the effects of inlet and cavitation pressures. The “long bearing theory” was found to be reasonably accurate in predicting the shape and magnitude of the pressure distribution. Considerable emphasis was directed to the study of the circumferential pressure distributions between 180 deg and 360 deg since aircraft engine dampers generally operate in this region. For the cavitated film (i.e., pressure distributions less than 360 deg), accurate prediction of the damper forces was found to be critically dependent on the effect of inlet and cavitation pressures.


Author(s):  
Mohamed A Hegazi ◽  
Andreas Hoffrichter ◽  
Jeffrey L Andrews ◽  
Gordon Lovegrove

Switcher locomotives operate in railway yards where they shunt railcars and assemble trains. Shunting railcars requires frequent aggressive acceleration and deceleration events in order for the locomotive to push or pull railcars onto specific tracks. As a result, switcher locomotives rarely sustain tractive power for any significant period of time. Given that all switchers in North America rely on diesel-electric propulsion; the result is rapid and frequent transitions in engine power leading to a very low engine efficiency and high levels of emissions. Any attempt to quantify or remedy these issues will face a lack of a representative profile or test cycle. A locomotive duty cycle is a breakdown of time spent at each power level of the locomotive’s engine. A major drawback of current duty cycles is that they only account for steady power. Such cycles are not representative of real switcher locomotive operation. This paper presents a real-world transient duty cycle for switcher locomotives that accounts for the rapid power transitions and is argued to be more statistically representative of actual operations. The methodology adopted relies on real-time data collection, microtrip based trip segmentation, and a finite mixture model-based clustering algorithm. Measurements were collected on a EMD 16-645 GP9 locomotive. The duty cycle developed herein is representative of switching operations in Southern Railway of British Columbia’s New Westminster Yard as an example of the methodology which can be repeated in other cases as well.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5340
Author(s):  
Kamil Jurczyszyn ◽  
Witold Trzeciakowski ◽  
Zdzisław Woźniak ◽  
Piotr Ziółkowski ◽  
Mateusz Trafalski

Background: Lasers are widely used in medicine in soft and hard tissue surgeries and biostimulation. Studies found in literature typically compare the effects of single-wavelength lasers on tissues or cell cultures. In our study, we used a diode laser capable of emitting three components of visible light (640 nm, red; 520 nm, green; 450 nm, blue) and combining them in a single beam. The aim of the study was to assess the effects of laser radiation in the visible spectrum on tissue in vitro, depending on the wavelength and pulse width. Methods: All irradiations were performed using the same output power (1.5 W). We used various duty cycles: 10, 50, 80 and 100% with 100 Hz frequency. Maximum superficial temperature, rate of temperature increase and lesion depth were investigated. Results: Maximum superficial temperature was observed for 450 + 520 nm irradiation (100% duty cycle). The highest rate of increase of temperature was noted for 450 + 520 nm (100% duty cycle). Maximum lesion depth was observed in case of three-wavelength irradiation (450 + 520 + 640 nm) for 100, 80 and 50% duty cycles. Conclusions: The synergistic effect of two-wavelength (450 + 520 nm) irradiation was observed in case of maximum temperature measurement. The deepest depth of lesion was noted after three-wavelength irradiation (450 + 520 + 640 nm).


1986 ◽  
Vol 60 (2) ◽  
pp. 554-561 ◽  
Author(s):  
H. Bark ◽  
S. M. Scharf

In anesthetized mongrel dogs we measured the blood flow in the left phrenic artery (Qdi), using an electromagnetic flow probe, before and during supramaximal phrenic nerve stimulation (pacing). This was done at constant respiratory rate (24/min) but at three different stimulation frequencies at a duty cycle of 0.4 (20, 50, and 100 Hz) and at three different duty cycles at a stimulation frequency of 50 Hz (duty cycle = 0.2, 0.4, and 0.8). Qdi was unchanged during diaphragm contraction until transdiaphragmatic pressure (Pdi) was greater than approximately 11 cmH2O, whereafter it began to decrease, reaching zero at Pdi approximately 20 cmH2O. Thus, when Pdi was greater than 21 cmH2O, all flow occurred during relaxation. Qdi averaged over the entire respiratory cycle (Qt) was less at duty cycle = 0.8 than under the other conditions. This was because of decreasing length of relaxation phase rather than a difference of relaxation phase flow (Qr), which was maximal during all conditions of phrenic stimulation. During pacing-induced fatigue, Qt actually rose slightly as Pdi fell. This was due to an increase in contraction phase flow while Qr remained constant. The relationship between Qt and tension-time index was not unique but varied according to the different combinations of duty cycle and stimulus frequency.


Sign in / Sign up

Export Citation Format

Share Document