Experimental Behavior of Reinforced Shotcrete with Low Fiber Content

2010 ◽  
Vol 168-170 ◽  
pp. 1976-1980 ◽  
Author(s):  
Xing Guo Wang ◽  
Zhao Xia Cheng ◽  
Yongchao Hao ◽  
Yi Xin Wang

Mixing three different fiber composites into concrete specimens respectively, compressive strength, splitting tensile strength and flexural strength for fiber-reinforced concrete was done. The results show that the strengths of fiber reinforced concrete are improved to some extent. Due to the addition of fiber, the fiber concrete bears some of the force in tension, thus the time from the initial crack to damage is more prolonged comparing with normal concrete. Fiber concrete specimens did not get the collapse and lower intensity suddenly. Compared with normal concrete, the maximum increase of the reinforced concrete with steel fiber SQB -32 (Ⅱ) is listed, which compressive, tensile and flexural strength are increased by 30%, 40% and 24%, respectively.

2011 ◽  
Vol 71-78 ◽  
pp. 1083-1089
Author(s):  
Zhang Luo

Extensive experimental research has been done on rate-dependent properties normal concrete, but very little on the tensile properties of steel fiber reinforced concrete (SFRC). In this article, based on a high-speed Instron servo-controlled hydraulic materials test machine is adopted to investigate the strain rate-dependent properties of bending tensile properties for SFRC. The scheme of experiment, the works of specimens fabricating and the processes of both loading and measuring were introduced. A total of 30 beam specimens are tested. The steel fiber content is varied: 0%, 1.0%, 2.0%, 3.0% and 4.0% by volume. The experimental results were analyzed. The emphasis is put on the study of the flexural strength changes of SFRC under different strain rates. It is discovered that, with the improvement of the strain rate, increasing strength of SFRC is very obvious. While the strain rate increases from 1.4×10-4s-1 to 0.53×10-4s-1, the flexural strength increasing around 30%.


Author(s):  
V. A. Dorf ◽  
◽  
R. O. Krasnovskij ◽  
D. E. Kapustin ◽  
P. S. Sultygova ◽  
...  

The paper considers the effects of high temperatures in case of fire on the change in impermeability of steel fiber reinforced concrete having a high-strength cement-sand matrix and various content of fiber of different types, sizes, and strength. It is shown that in the temperature range from 20° to 1100° C in the diagram “Heating temperature - impermeability class», the matrix and steel fiber concrete(SFC) have a S-shaped character, and in case of heating temperature of over 100 °C, there comes a distinct decrease in impermeability.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5202
Author(s):  
Mohammad Iqbal Khan ◽  
Wasim Abbass ◽  
Mohammad Alrubaidi ◽  
Fahad K. Alqahtani

High-strength concrete is used to provide quality control for concrete structures, yet it has the drawback of brittleness. The inclusion of fibers improves the ductility of concrete but negatively affects the fresh properties of fiber-reinforced concrete. The effects of different fine to coarse aggregate ratios on the fresh and hardened properties of steel fiber reinforced concrete were investigated in this study. Mixtures were prepared with various fine to coarse aggregate (FA/CA) ratios incorporating 1% steel fiber content (by volume) at constant water to cement ratio. The workability, unit weight, and temperature of the concrete in the fresh state, and the mechanical properties of steel-fiber-reinforced concrete (SFRC) were investigated. The inclusion of fiber in concrete influenced the mobility of concrete in the fresh state by acting as a barrier to the movement of coarse aggregate. It was observed that the concrete with an FA/CA ratio above 0.8 showed better flowability in the fresh state, whilst an above 0.9 FA/CA ratio requires excessive superplasticizer to maintain the flowability of the mixtures. The compressive and flexural strength of SFRC increased with an increase in the FA/CA ratio by around 10% and 28%, respectively. Experimental values of compressive strength and flexural strength showed good agreement, however, modulus of elasticity demonstrated slightly higher values. The experimentally obtained measurements of the mechanical properties of SFRC conformed reasonably well with the available existing prediction equations, and further enabled establishing predictive isoresponse interactive equations within the scope of the investigation domain.


2014 ◽  
Vol 629-630 ◽  
pp. 245-251
Author(s):  
Liang Huo ◽  
Xi Qiang Lin ◽  
Guo You Li ◽  
Tao Zhang

It used conventional techniques and materials prepared high strength fiber reinforced concrete whose strength class is above C100 and it studied the effect of fiber content on the mechanical properties and elastic modulus. It also studied the fire resistance of fiber reinforced concrete. Results suggest that the strength of 28d concrete is above 100MPa and the highest strength is 126.4MPa. Under the same ratio conditions, the greater the volume content of steel fiber concrete flexural strength, the splitting tensile strength is higher. The steel fiber volume only affect elastic modulus of concrete little. When it heats to 300 °C, the no fiber concrete comminuted burst while the fiber concrete does not damaged at elevated temperatures up to 300 °C and continue to heat up, the crushing damage occurs at about 460 °C. Has not been damaged concrete specimens at 300 °C, the quality have emerged about 3% decline, while the compressive strength increased by 35%-52%, the highest strength reached 180.3MPa.


2018 ◽  
Vol 9 (2) ◽  
pp. 1
Author(s):  
Mustaqqim Abdul Rahim ◽  
Omi Yanti Pohan ◽  
Mohd Badrul Hisyam Ab Manaf ◽  
Ahmad Nur Aizat Ahmad ◽  
Shahiron Shahidan ◽  
...  

Steel is one of the fibers used in fiber reinforced concrete technology. Steel fibers in concrete help to improve flexural  strength and  crack  resistance. Today,  there  are  critical  shortages of  natural  resources. In  this  research,  waste concrete is being used to produce recycled aggregate. The Recycled Coarse Aggregate (RCA) is partially replaced with the natural coarse aggregate (NCA) in concrete to analyze the mechanical properties of steel fiber reinforced concrete (SFRC). Several tests were conducted, such as compression and flexural tests. Five batches (A, B, C, D and E) of concrete cube and prism samples with different proportions of RCA (0%, 25%, 50%, 75% & 100%) and 1.5% volume fraction of steel fiber were tested, together with one control sample which used 100% NCA and 0% volume fraction of steel fiber. As a result, the control sample achieved 27.32 MPa in compression strength and 0.90 MPa for flexural strength while batch A managed to achieve 48.60 MPa and 1.10  MPa respectively. The cube and prism samples of all batches (A, B, C, D, E) showed decreasing compressive and flexural strength with increasing proportion of RCA in the concrete. Four samples fully achieved more than 20 MPa of compression strength and optimum flexural strength.


2021 ◽  
Vol 248 ◽  
pp. 03039
Author(s):  
Yu Binglin

Scrap steel fiber concrete (SFRC) is a new kind of concrete material, which uses the scrap steel fiber from the scrap tire as the reinforced fiber of FRP bar fiber reinforced concrete, replacing or partially replacing the traditional steel fiber and synthetic fiber. This paper summarizes the research status of waste steel fiber at home and abroad, including the mechanical properties of compressive and tensile resistance, the mixing amount and use requirements of waste steel fiber, and finally the development prospect of waste steel fiber concrete is forecasted


2016 ◽  
Vol 857 ◽  
pp. 363-366 ◽  
Author(s):  
Mustaqqim Abdul Rahim ◽  
Zuhayr Md Ghazaly ◽  
Raja Nurazira Raja Mamat ◽  
Muhammad Azizi Azizan ◽  
Nur Fitriah Isa ◽  
...  

Slurry Infiltrated Fiber Reinforced Concrete (SIFCON) is a relatively new high performance and advanced material and can be considered as a special type of Steel Fiber Reinforced Concrete (SFRC). The hooked-end shape steel fiber assist in controlling the propagation of cracking in the matrix by improving the overall cracking resistance and by bridging across even smaller cracks. In this paper, the comparison between the steel fiber reinforcement and BRC wire mesh will obtain and also between the different thickness size. The steel fiber will use from different percentage based on volume frictions which are 0.5%, 1% and 2% with aspect ratio 67. The beam is tested for flexural strength. The relationship between loads versus deflection represented graphically. The highest flexural strength obtained in this research is 19.34 MPa with 2% volume friction of steel fiber.


Sign in / Sign up

Export Citation Format

Share Document