Adsorption Properties of Self-Assembly Synthesized Microporous Silica Material from Acidic Aqueous Media

2011 ◽  
Vol 179-180 ◽  
pp. 519-522
Author(s):  
Yan Yan Ji ◽  
Biao Zhang ◽  
Xiao Chun Wang

Microporous silica material AMPS has been synthesized via TEA+ cations assisted self-assembly of silica species in acidic aqueous solution. Nitrogen adsorption analysis revealed 0.65 nm uniform micropores in AMPS, companied with a Langmuir surface area of 745 m2/g and a pore volume of 0.22 cm3/g. The microporous AMPS exhibited an excellent adsorptive performance for volatile organic compounds (VOC) such as cyclohexane and acetone, compared with conventional zeolites such as Y, ZSM-5 and A. The adsorption was rapidly saturated at lower relative pressure with higher capacities than that of conventional zeolites. These features implied promising potentials in the separation and removal of VOCs in the atmosphere by using APS-3.

Author(s):  
Xiaoya Peng ◽  
Dan Li ◽  
Yuanting Li ◽  
Haibo Xing ◽  
Wei Deng

Antibiotic contaminants in aqueous media pose serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly...


2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Carmen Cretu ◽  
Loredana Maiuolo ◽  
Domenico Lombardo ◽  
Elisabeta I. Szerb ◽  
Pietro Calandra

The involvement of metal ions within the self-assembly spontaneously occurring in surfactant-based systems gives additional and interesting features. The electronic states of the metal, together with the bonds that can be established with the organic amphiphilic counterpart, are the factors triggering new photophysical properties. Moreover, the availability of stimuli-responsive supramolecular amphiphile assemblies, able to disassemble in a back-process, provides reversible switching particularly useful in novel approaches and applications giving rise to truly smart materials. In particular, small amphiphiles with an inner distribution, within their molecular architecture, of various polar and apolar functional groups, can give a wide variety of interactions and therefore enriched self-assemblies. If it is joined with the opportune presence and localization of noble metals, whose chemical and photophysical properties are undiscussed, then very interesting materials can be obtained. In this minireview, the basic concepts on self-assembly of small amphiphilic molecules with noble metals are shown with particular reference to the photophysical properties aiming at furnishing to the reader a panoramic view of these exciting problematics. In this respect, the following will be shown: (i) the principles of self-assembly of amphiphiles that involve noble metals, (ii) examples of amphiphiles and amphiphile-noble metal systems as representatives of systems with enhanced photophysical properties, and (iii) final comments and perspectives with some examples of modern applications.


The Analyst ◽  
2021 ◽  
Author(s):  
Megha Basak ◽  
Gopal Das

Hazardous volatile organic compounds (VOCs) can significantly impact human health and the environment. Hence, the detection of VOCs has become foremost important. Quinoxaline-based fluorimetric probe (1) unveils a notable “Turn-On”...


2011 ◽  
Vol 1304 ◽  
Author(s):  
Qingguo Meng ◽  
David C. Doetschman ◽  
Apostolos K. Rizos ◽  
Min-Hong Lee ◽  
Jürgen T. Schulte ◽  
...  

ABSTRACTAdsorption and chemistry of tripropylphosphate (TPP) in mesoporous NaX zeolite, which was templated by cationic templated polymer (polydiallyldimethylammonium chloride, PDADMAC) with two different length chains, was investigated. The structural properties of the zeolites were characterized by X-ray diffraction (XRD) and nitrogen adsorption analysis. The chemical activities of different zeolites toward the decomposition of TPP were determined with solid state 31P NMR spectra. After exposure of zeolites to TPP was sufficient and equilibrium was reached, a stoichiometric amount of water was also adsorbed and hydrolysis was observed. The TPP decomposition yields in different NaX zeolites were compared.


Author(s):  
T. F. Kouznetsova ◽  
A. I. Ivanets ◽  
J. D. Sauka

Titania-silica membranes on a porous quartz substrate are prepared by its direct contact with metal silicate sol at various Ti/Si ratios in the conditions of coagel sedimentation and presence of cetylpyridinium chloride. The study of textural and adsorption properties of membranes is conducted by low-temperature nitrogen adsorption-desorption, including methods of t-plots and DFT theory. It was shown that obtained membranes have mesoporous structure with the specific surface area and pore hydraulic diameter varied in intervals of 64–217 m2 /g and 4–11 nm, respectively. Developed values of surface area remain up to molar ratio of Ti/Si = 50/50.


Sign in / Sign up

Export Citation Format

Share Document