A Research of Virus Detection Combined Dynamic and Static Analysis Methods

2011 ◽  
Vol 187 ◽  
pp. 625-630
Author(s):  
Chun Yu Miao ◽  
Li Na Chen

we present a virus detection system based on the D-S theory of evidence, in which the dynamic and static analysis methods are combined. The detection engine applies two types of classifier, support vector amchine and probabilistic neural network to detect the virus. For SVM classifier, we extract the feature vector by monitoring the samples. And the static feature of samples is used in the probabilistic neural network classifier. Finally, the D-S theory of evidence is used to combine the contribution of each individual classifier to give the final decision.experiments show the presented method is more efficiently of the virus detections.

2019 ◽  
Vol 3 (4) ◽  
pp. 13-24 ◽  
Author(s):  
Naser Safdarian ◽  
Mohammadreza Hedyezadeh

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other normal parts of the breast image. In this study, 19 final different features of each image were extracted to generate the feature vector for classifier input. The proposed method not only determined the boundary of masses but also classified the type of masses such as benign and malignant ones. The neural network classification methods such as the radial basis function (RBF), probabilistic neural network (PNN), and multi-layer perceptron (MLP) as well as the Takagi-Sugeno-Kang (TSK) fuzzy classification, the binary statistic classifier, and the k-nearest neighbors (KNN) clustering algorithm were used for the final decision of mass class. Results: The best results of the proposed method for accuracy, sensitivity, and specificity metrics were obtained 97%±4.36, 100%±0 and 96%±5.81, respectively for support vector machine (SVM) classifier. Conclusions: By comparing the results of the proposed method with the results of the other previous methods, the efficiency of the proposed algorithm was reported.


Author(s):  
O. D. Fenwa ◽  
O. O. Alo ◽  
I. O. Omotoso

Diabetic Retinopathy (DR) is a medical condition where the retina is damaged because fluid leaks from blood vessels into the retina. Ophthalmologists recognize diabetic retinopathy based on features, such as blood vessel area, exudes, hemorrhages, microaneurysms and texture. Aim: The focus of this paper is to evaluate the performance of Decision Tree (DT), Support Vector Machine (SVM) and Probabilistic Neural Network (PNN) Classifiers in Diabetes Retinopathy Detection. Results: Corresponding results showed SVM has the best classification strength by achieving Recognition Accuracy (RA) of 98.50%, while PNN and DT achieved RA of 97.60% and 89.20% respectively. In terms of False Acceptance Rate (FAR) and False Rejection Rate (FRR), SVM has the least values of 7.21, 8.10 while DT and PNN showed 11.10, 9.30 and 13.21, 10.10 respectively. However, in this paper a Mobile based Diabetes Retinopathy Detection System was developed to make the system available for the masses for early detection of the disease.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2020 ◽  
Vol 10 (18) ◽  
pp. 6417 ◽  
Author(s):  
Emanuele Lattanzi ◽  
Giacomo Castellucci ◽  
Valerio Freschi

Most road accidents occur due to human fatigue, inattention, or drowsiness. Recently, machine learning technology has been successfully applied to identifying driving styles and recognizing unsafe behaviors starting from in-vehicle sensors signals such as vehicle and engine speed, throttle position, and engine load. In this work, we investigated the fusion of different external sensors, such as a gyroscope and a magnetometer, with in-vehicle sensors, to increase machine learning identification of unsafe driver behavior. Starting from those signals, we computed a set of features capable to accurately describe the behavior of the driver. A support vector machine and an artificial neural network were then trained and tested using several features calculated over more than 200 km of travel. The ground truth used to evaluate classification performances was obtained by means of an objective methodology based on the relationship between speed, and lateral and longitudinal acceleration of the vehicle. The classification results showed an average accuracy of about 88% using the SVM classifier and of about 90% using the neural network demonstrating the potential capability of the proposed methodology to identify unsafe driver behaviors.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


Author(s):  
Sumit S. Lad ◽  
◽  
Amol C. Adamuthe

Malware is a threat to people in the cyber world. It steals personal information and harms computer systems. Various developers and information security specialists around the globe continuously work on strategies for detecting malware. From the last few years, machine learning has been investigated by many researchers for malware classification. The existing solutions require more computing resources and are not efficient for datasets with large numbers of samples. Using existing feature extractors for extracting features of images consumes more resources. This paper presents a Convolutional Neural Network model with pre-processing and augmentation techniques for the classification of malware gray-scale images. An investigation is conducted on the Malimg dataset, which contains 9339 gray-scale images. The dataset created from binaries of malware belongs to 25 different families. To create a precise approach and considering the success of deep learning techniques for the classification of raising the volume of newly created malware, we proposed CNN and Hybrid CNN+SVM model. The CNN is used as an automatic feature extractor that uses less resource and time as compared to the existing methods. Proposed CNN model shows (98.03%) accuracy which is better than other existing CNN models namely VGG16 (96.96%), ResNet50 (97.11%) InceptionV3 (97.22%), Xception (97.56%). The execution time of the proposed CNN model is significantly reduced than other existing CNN models. The proposed CNN model is hybridized with a support vector machine. Instead of using Softmax as activation function, SVM performs the task of classifying the malware based on features extracted by the CNN model. The proposed fine-tuned model of CNN produces a well-selected features vector of 256 Neurons with the FC layer, which is input to SVM. Linear SVC kernel transforms the binary SVM classifier into multi-class SVM, which classifies the malware samples using the one-against-one method and delivers the accuracy of 99.59%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


Sign in / Sign up

Export Citation Format

Share Document