Effect of Cooling Condition on Microstructure and Mechanical Properties in Large Line Energy Welded Joints of Ultra-Fine Grained Steel

2011 ◽  
Vol 189-193 ◽  
pp. 3345-3350 ◽  
Author(s):  
Hong Yun Zhao ◽  
Li Zhou ◽  
Bo Chen ◽  
Guo Dong Wang

The medium and heavy plate of 800 MPa grade ultra-fine grained steel was welded by CO2 gas shielded welding using large line energy. The effect of cooling condition on microstructure and mechanical properties of welded joints was investigated. The results showed that the cases about significant grain size increasing and strength decreasing do exist in the heat affected zone of large line energy welded joints of 800 MPa grade ultra-fine grained steel. Grain growth and softening in the heat affected zone could be suppressed effectively by water cooling in the course of welding. The mechanical properties of welded joints could be significantly increased by water cooling, and the process of CO2 gas shielded welding under water cooling is practical for joining ultra-fine grained steel using large line energy.

Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 586 ◽  
Author(s):  
Shi ◽  
Li ◽  
Hu ◽  
Tan ◽  
Zhang ◽  
...  

A fine-grained Mg-2Y-0.6Nd-0.6Zr alloy was processed by bar-rolling and equal-channel angular pressing (ECAP). The effect of ECAP on the microstructure and mechanical properties of rolled Mg-2Y-0.6Nd-0.6Zr alloy was investigated by optical microscopy, scanning electron microscopy, electron backscattered diffraction and a room temperature tensile test. The results show that the Mg-2Y-0.6Nd-0.6Zr alloy obtained high strength and poor plasticity after rolling. As the number of ECAP passes increased, the grain size of the alloy gradually reduced and the texture of the basal plane gradually weakened. The ultimate tensile strength of the alloy first increased and then decreased, the yield strength gradually decreased, and the plasticity continuously increased. After four passes of ECAP, the average grain size decreased from 11.2 µm to 1.87 µm, and the alloy obtained excellent comprehensive mechanical properties. Its strength was slightly reduced compared to the as-rolled alloy, but the plasticity was greatly increased.


2021 ◽  
Vol 316 ◽  
pp. 408-412
Author(s):  
Anatoly A. Babenko ◽  
Leonid A. Smirnov ◽  
Alena G. Upolovnikova

The paper presents the results of the effect of boron, manganese and sulfur on the microstructure and mechanical properties of pipe steel 17G1SU. It was shown that the microstructure of boron-free steel sample containing 1.4% Mn and 0.01% S consists mainly of ferrite and a small amount of perlite. Samples microalloyed by boron are represented by a dispersed ferritic-bainitic structure. A decrease in ferrite grain size from 8.7 μm, in a comparative sample without boron containing 1.4% Mn and 0.010% S to 5.8 μm in a sample of steel containing 0.006% B, 1.6% Mn and 0.011% S, shows increasing the dispersity of the ferritic-bainitic structure. A decrease in the manganese content to 1.4, sulfur to 0.004% and an increase in boron concentration to 0.0011%, despite an increase in grain size to 6.8 μm, retain a fine-grained structure. The effect of boron, manganese, and sulfur content on the microhardness of the structural phases of the studied pipe steel samples is noted. The smallest microhardness of ferrite and perlite is observed in the base sample without boron, reaching 180 and 214 HV10, respectively. The microalloying of pipe steel containing 1.6% Mn, 0.011% S with boron is accompanied by an increase in the microhardness of the bainitic phase to 314 HV10, which increases to 400 HV10 with an increase in boron concentration to 0.011%, and a decrease in the content of manganese and sulfur to 1.4 and 0.003%. In this case, the microhardness of the ferrite phase, reaching an increase to 260 HV10, is practically independent of the content of boron, manganese, and sulfur. The mechanical properties of the experimental metal rolling with a thickness of 10 mm provide the production of rolled steel of strength class X80, without heat treatment, regardless of the content of boron, manganese, and sulfur, as a result of the formation of a finely dispersed ferrite-bainitic structure.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4366
Author(s):  
Saqib Anwar ◽  
Ateekh Ur Rehman ◽  
Yusuf Usmani ◽  
Ali M. Al-Samhan

This study evaluated the microstructure, grain size, and mechanical properties of the alloy 800H rotary friction welds in as-welded and post-weld heat-treated conditions. The standards for the alloy 800H not only specify the composition and mechanical properties but also the minimum grain sizes. This is because these alloys are mostly used in creep resisting applications. The dynamic recrystallization of the highly strained and plasticized material during friction welding resulted in the fine grain structure (20 ± 2 µm) in the weld zone. However, a small increase in grain size was observed in the heat-affected zone of the weldment with a slight decrease in hardness compared to the base metal. Post-weld solution heat treatment (PWHT) of the friction weld joints increased the grain size (42 ± 4 µm) in the weld zone. Both as-welded and post-weld solution heat-treated friction weld joints failed in the heat-affected zone during the room temperature tensile testing and showed a lower yield strength and ultimate tensile strength than the base metal. A fracture analysis of the failed tensile samples revealed ductile fracture features. However, in high-temperature tensile testing, post-weld solution heat-treated joints exhibited superior elongation and strength compared to the as-welded joints due to the increase in the grain size of the weld metal. It was demonstrated in this study that the minimum grain size requirement of the alloy 800H friction weld joints could be successfully met by PWHT with improved strength and elongation, especially at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document