The Effect of Boron, Manganese and Sulfur on the Microstructure and Mechanical Properties of Pipe Steel 17G1SU

2021 ◽  
Vol 316 ◽  
pp. 408-412
Author(s):  
Anatoly A. Babenko ◽  
Leonid A. Smirnov ◽  
Alena G. Upolovnikova

The paper presents the results of the effect of boron, manganese and sulfur on the microstructure and mechanical properties of pipe steel 17G1SU. It was shown that the microstructure of boron-free steel sample containing 1.4% Mn and 0.01% S consists mainly of ferrite and a small amount of perlite. Samples microalloyed by boron are represented by a dispersed ferritic-bainitic structure. A decrease in ferrite grain size from 8.7 μm, in a comparative sample without boron containing 1.4% Mn and 0.010% S to 5.8 μm in a sample of steel containing 0.006% B, 1.6% Mn and 0.011% S, shows increasing the dispersity of the ferritic-bainitic structure. A decrease in the manganese content to 1.4, sulfur to 0.004% and an increase in boron concentration to 0.0011%, despite an increase in grain size to 6.8 μm, retain a fine-grained structure. The effect of boron, manganese, and sulfur content on the microhardness of the structural phases of the studied pipe steel samples is noted. The smallest microhardness of ferrite and perlite is observed in the base sample without boron, reaching 180 and 214 HV10, respectively. The microalloying of pipe steel containing 1.6% Mn, 0.011% S with boron is accompanied by an increase in the microhardness of the bainitic phase to 314 HV10, which increases to 400 HV10 with an increase in boron concentration to 0.011%, and a decrease in the content of manganese and sulfur to 1.4 and 0.003%. In this case, the microhardness of the ferrite phase, reaching an increase to 260 HV10, is practically independent of the content of boron, manganese, and sulfur. The mechanical properties of the experimental metal rolling with a thickness of 10 mm provide the production of rolled steel of strength class X80, without heat treatment, regardless of the content of boron, manganese, and sulfur, as a result of the formation of a finely dispersed ferrite-bainitic structure.

2011 ◽  
Vol 409 ◽  
pp. 474-479 ◽  
Author(s):  
C. Chan ◽  
J.L. McCrea ◽  
G. Palumbo ◽  
Uwe Erb

Monolithic and multilayered iron electrodeposits were successfully synthesized by the pulse plating electrodeposition method. Electron microscopy and Vickers microhardness measurements were used to investigate the microstructure and mechanical properties of the iron electrodeposits produced. Two types of monolithic iron coatings were produced, one with a coarse grained, columnar structure and the other with an ultra-fine grained structure. Hall-Petch type grain size strengthening was observed in these monolithic coatings. Multilayered iron coatings composed of alternating layers of coarse grained and fine grained structures were also produced. The hardness value of the multilayered coatings falls between the hardness values for the two types of monolithic coatings produced. This study has demonstrated the possibility of applying a multilayered structure design to tailor the microstructure and mechanical properties of electrodeposited iron coatings.


2011 ◽  
Vol 189-193 ◽  
pp. 3345-3350 ◽  
Author(s):  
Hong Yun Zhao ◽  
Li Zhou ◽  
Bo Chen ◽  
Guo Dong Wang

The medium and heavy plate of 800 MPa grade ultra-fine grained steel was welded by CO2 gas shielded welding using large line energy. The effect of cooling condition on microstructure and mechanical properties of welded joints was investigated. The results showed that the cases about significant grain size increasing and strength decreasing do exist in the heat affected zone of large line energy welded joints of 800 MPa grade ultra-fine grained steel. Grain growth and softening in the heat affected zone could be suppressed effectively by water cooling in the course of welding. The mechanical properties of welded joints could be significantly increased by water cooling, and the process of CO2 gas shielded welding under water cooling is practical for joining ultra-fine grained steel using large line energy.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 586 ◽  
Author(s):  
Shi ◽  
Li ◽  
Hu ◽  
Tan ◽  
Zhang ◽  
...  

A fine-grained Mg-2Y-0.6Nd-0.6Zr alloy was processed by bar-rolling and equal-channel angular pressing (ECAP). The effect of ECAP on the microstructure and mechanical properties of rolled Mg-2Y-0.6Nd-0.6Zr alloy was investigated by optical microscopy, scanning electron microscopy, electron backscattered diffraction and a room temperature tensile test. The results show that the Mg-2Y-0.6Nd-0.6Zr alloy obtained high strength and poor plasticity after rolling. As the number of ECAP passes increased, the grain size of the alloy gradually reduced and the texture of the basal plane gradually weakened. The ultimate tensile strength of the alloy first increased and then decreased, the yield strength gradually decreased, and the plasticity continuously increased. After four passes of ECAP, the average grain size decreased from 11.2 µm to 1.87 µm, and the alloy obtained excellent comprehensive mechanical properties. Its strength was slightly reduced compared to the as-rolled alloy, but the plasticity was greatly increased.


2010 ◽  
Vol 638-642 ◽  
pp. 2389-2394 ◽  
Author(s):  
Masahide Gotoh ◽  
Katsuhiro Seki ◽  
M. Shozu ◽  
Hajime Hirose ◽  
Toshihiko Sasaki

The fine-grained rolling steels NFG600 and the conventional usual rolling steels SM490 were processed by sand paper polishing and mechanical grinding to compare the residual stress generated after processing. The average grain size of NFG600 and SM490 is 3 μm and 15μm respectively. Therefore improvement of mechanical properties for such fine-grained steels is expected, it is important to understand the residual stress state of new fine-grained materials with processing. In this study, multi axial stresses of two kinds of specimens after polishing and grinding were measured by three kinds of analysis methods including cos-ψ method. As a result, as for σ33, the stress of NFG was compression, though that of SM490 was tension.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


2017 ◽  
Vol 23 (3) ◽  
pp. 222 ◽  
Author(s):  
Ondřej Hilšer ◽  
Stanislav Rusz ◽  
Wojciech Maziarz ◽  
Jan Dutkiewicz ◽  
Tomasz Tański ◽  
...  

<p>Equal channel angular pressing (ECAP) method was used for achieving very fine-grained structure and increased mechanical properties of AZ31 magnesium alloy. The experiments were focused on the, in the initial state, hot extruded alloy. ECAP process was realized at the temperature 250°C and following route Bc. It was found that combination of hot extrusion and ECAP leads to producing of material with significantly fine-grained structure and improves mechanical properties. Alloy structure after the fourth pass of ECAP tool with helix matrix 30° shows a fine-grained structure with average grain size of 2 µm to 3 µm and high disorientation between the grains. More experimental results are discussed in this article.</p>


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


2006 ◽  
Vol 503-504 ◽  
pp. 287-292 ◽  
Author(s):  
D. Nagarajan ◽  
Chakkingal Uday ◽  
P. Venugopal

Severe plastic deformation processes like equal channel angular extrusion (ECAE) have been widely investigated for their ability to produce nano/ ultra fine-grained microstructures. It is well known that submicron sized grains/ sub grains can be produced in most Al alloys using this technique. However, industrial applications of ECAE will depend heavily on the advantages conferred by this process when it is used as an intermediate processing step prior to conventional forming. In the current investigation, the influence of pre processing by ECAE on subsequent post processing by conventional cold extrusion has been investigated. ECAE extrusion was carried out on cylindrical specimens of AA 6101 using an ECAE die with a die angle of 120 degrees. Extrusion was carried out for three passes using two different processing routes. The ECA extruded specimens were subsequently subjected to conventional cold extrusion. The differences in extrusion pressures, which have a strong influence on industrial applications, were noted. Changes in microstructure and mechanical properties were also determined. The obtained results of mechanical properties and microstructure evaluation show that for high strains (strain ε ≈ 2.01), ECAE through some processing routes can be effectively used as an intermediate processing step prior to conventional cold extrusion to obtain a product with enhanced mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document