Semi-Solid Stirring Brazing of SiCp/A356 Composites and Aluminum Alloy in Air

2011 ◽  
Vol 189-193 ◽  
pp. 3521-3524 ◽  
Author(s):  
Hui Bin Xu ◽  
Quan Xiang Luo ◽  
Chun Tian Li ◽  
Chang Hua Du

The semi-solid brazing process of SiCp/A356 composites and aluminum alloy was investigated. The two substrates were heated up to the semisolid temperature range of Zn-Al filler metal in the joint region by a resistance heating plate. At this point a stirrer was introduced into the weld seam in order to mix filler metal and the two sides of substrates into a single uniform joint. After stirring, specimens were sectioned for analysis of macro- and micro-structures along the weld region. The research shows that SiCp/A356 composites and aluminum can be successfully joining with semi-solid filler metal. It can be found that most of the oxide film on the surface of the base metal was disrupted and removed through the observation by SEM. The metallurgical bonds formed between the filler metal and the base materials. Moreover, the oxide film of surface of aluminum alloy was more thoroughly disrupted and removed than that of surface of composites with existing of Sic particle. The joint microstructure with globular α-Al grain enclosed by rich-Zn phase can be obtained after stirring brazing.

2011 ◽  
Vol 306-307 ◽  
pp. 738-741
Author(s):  
Hui Bin Xu ◽  
Quan Xiang Luo ◽  
Liang Xing ◽  
Bo Fang Zhou ◽  
You Liang Zeng ◽  
...  

This paper explores the brazing process of SiCp/A356 composites and aluminum alloy using semisolid metal. The two substrates were heated up to the semisolid temperature range of Zn-Al filler metal in the joint region by a resistance heating plate. In order to mix the filler metal with the base metal of both sides to be a single uniform joint, a stirrer was introduced into the weld seam. After stirring, specimens were sectioned for analysis of macro- and micro-structures along the weld region. The research shows that SiCp/A356 composites and aluminum can be local joined with semi-solid filler metal. It can be found that part of the oxide film on the interface of the base metal was disrupted and removed through the observation by SEM. The metallurgical bonds can be formed between the filler metal and the base materials. Moreover, the oxide film of surface of aluminum alloy disrupted and removed was easier than that of surface of composites with existing of Sic particle. The joint microstructure with globular α-Al grain enclosed by rich-Zn phase can be obtained after stirring brazing.


2011 ◽  
Vol 239-242 ◽  
pp. 663-666 ◽  
Author(s):  
Hui Bin Xu ◽  
Quan Xiang Luo ◽  
Jin Ying He ◽  
Bo Fang Zhou ◽  
You Liang Zeng ◽  
...  

The semi-solid brazing process of SiCp/A356 composites and 2024 aluminum alloy using Zn-Al eutectic filler metal at 450 °C has been investigated. The two substrates and Zn-Al filler metal were heated up to the semisolid temperature range of Zn-Al filler metal by a resistance heating plate. In order to mix the filler metal with the base metal of both sides to be a single uniform joint, a stirrer was introduced into the weld seam. After stirring, specimens were sectioned for analysis of macro- and micro-structures along the weld region. The research shows that SiCp/A356 composites and aluminum can be joining by semisolid metal. It can be found that almost half of the oxide film on the surface of the base metal was disrupted and removed through the observation by SEM. The metallurgical bonds formed between the filler metal and the base materials on the interface of oxide had been disrupted. Moreover, the oxide film of surface of aluminum alloy was more thoroughly disrupted and removed than that of surface of composites with existing of SiC particle.


2011 ◽  
Vol 383-390 ◽  
pp. 2710-2713
Author(s):  
Hui Bin Xu ◽  
Bo Fang Zhou ◽  
Quan Xiang Luo ◽  
You Liang Zeng ◽  
Chang Hua Du

The joining process of SiCp/A356 composites is investigated. The two substrates are heated up to the melt temperature of Zn27Al filler metal by a resistance heating plate. At the time, a stirrer is introduced into the liquid weld seam in order to mix filler metal and two sides of substrates into a single uniform joint. After stirring, specimens are sectioned for the analysis of macro- and micro-structures along the weld region. The research shows that two typical joint interfaces with oxide film and without one were found. So, oxide film on the substrate wasn’t completely disrupted during stirring brazing at 500°C.And, the tensile strength of joint is only 50MPa.


2014 ◽  
Vol 496-500 ◽  
pp. 92-95 ◽  
Author(s):  
Atsadawoot Geaowdee ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

The purpose of this research is to investigate the semi-solid state joining of SSM 356 aluminum alloy which welded at its semi-solid state by using oxygen - acetylene as a heat source. Then a stirrer was used to stir the weld seam. Joining was performed under nitrogen shielding gas. The parameters of this study were rotation speed at 1,110 and 1,320 rpm, welding speed at 120 and 160 mm/min, semi-solid state temperatures 575-590 and 590-610 oC. The results indicated that the weld's microstructure consisted of irregular globular structure. In addition, porosities were found at top of weld metal. The highest tensile strength and elongation were obtained from rotation speed at 1,110 rpm, welding speed at 120 mm/min and joining temperature at 575-590 oC.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jing Xiao ◽  
Shun Li ◽  
Shuxin Bai ◽  
Degan Xiong ◽  
Yu Tang

Semisolid compression brazing of Al50Si alloy using Zn-Al-Cu filler metal assisted by SiC particles coating has been developed. The effects of the size and concentration of SiC particles on the microstructure and mechanical properties of the joints were studied. By using 1 μm SiC particles and the concentration of SiC particles increased to 3 g/m2, oxide film on the surface of base metal was completely disrupted and a good bonding strength was obtained. As SiC concentration further increased to 4 g/m2, colonies of SiC particle with nonwetting areas of filler metal formed at the interface, resulting in a decrease in the bonding strength. By using 5 μm SiC particles, the bonding strength was enhanced as SiC concentration increased from 1 g/m2 to 3 g/m2 due to the removal of the oxide film. By further increasing SiC concentration to 16 g/m2, the strength was constantly improved because of the dislocation strengthening effect generated at the SiC particle layer/filler metal interface. When SiC concentration increased to 32 g/m2, nonwetting area appeared inside the SiC particles layer, causing a decrease in the bonding strength.


2020 ◽  
Vol 50 ◽  
pp. 159-167
Author(s):  
Wenlin Chen ◽  
Chen Xu ◽  
Penglin Pan ◽  
Xiangming Ruan ◽  
Hongxuan Ji

2010 ◽  
Vol 20 ◽  
pp. s744-s748 ◽  
Author(s):  
Zhen-yu WANG ◽  
Ze-sheng JI ◽  
Li-xin SUN ◽  
Hong-yu XU
Keyword(s):  

2021 ◽  
pp. 130756
Author(s):  
Yan Liu ◽  
Xiaolin Chen ◽  
Minqiang Gao ◽  
Renguo Guan

Author(s):  
Chaowen Li ◽  
Shuangjian Chen ◽  
Kun Yu ◽  
Zhijun Li

GH3535 supperalloy, whose grade of ASME is UNS N10003, is currently considered as a candidate material for solid-fuel and fluid-fuel molten salt reactor in china. During the development of procedures for welding GH3535 superalloy, consideration should always be given to the possibility that repair welding may be necessary. This paper presents weld repairs of GH3535 alloy rolled plates using gas tungsten arc welding with filler metal. The purpose of this work is to evaluate the low heat input process for weld repair of GH3535 alloy plates about the microstructure features and mechanical properties. The results demonstrated that sound joints without defects could be obtained after weld repairs. Due to repair thermal cycles on the original weld seam, the size of carbide precipitate became large, but repair welding is found to cause no decrease in short-term time-independent strength.


Sign in / Sign up

Export Citation Format

Share Document