The Coupling Support Technology for Y Style Large Span Intersection in Deep Soft Rock Roadway

2011 ◽  
Vol 199-200 ◽  
pp. 1773-1776 ◽  
Author(s):  
Zhan Jin Li ◽  
Xue Li Zhao ◽  
Yang Zhang

Because of crossing point’s large span, stress concentration clearly, result in parts of the intersection of poor support, construction and maintenance difficult, especially Y-Intersection is more serious part of deformation and failure. Through situ investigation and theoretical research, summarize the typical failure modes of the deep large Y-intersection, analyze the main reasons for destruction of the crossing point that is both sides of Bovine unconstrained and supported respectively. The new coupling supporting design—bolt-mesh-cable + truss to control the top of crossing point , while the key technology of the double control bolt is used to control the Crossing point.—is proposed.

2011 ◽  
Vol 243-249 ◽  
pp. 2666-2669
Author(s):  
Zhan Jin Li ◽  
Yang Zhang ◽  
Xue Li Zhao

With the depth increasing continuously, more complicated of geological conditions, will make intersection in deep soft rock roadway is very difficult to support. In order to solve the intersection problem of difficult to support, combined with the third levels of the Fifth Coal Mine of Hemei, the coupling supporting design—anchor-mesh-cable + truss to control stability of crossing point—is proposed. Based software of FLAC3D, simulate the program applicable in deep soft rock roadway intersection. Application results show that the coupling support technology of anchor-mesh-cable + truss can effectively control the deformation of intersection in deep soft rock roadway.


2014 ◽  
Vol 84 ◽  
pp. 812-817
Author(s):  
Li Xuefeng ◽  
Cheng Guihai ◽  
Li Xiaoquan ◽  
Zhang Ruichong

2019 ◽  
Vol 6 (4) ◽  
pp. 493-504
Author(s):  
Wei Lu ◽  
Qi Wang ◽  
Bei Jiang ◽  
Shuo Xu ◽  
Bohong Liu ◽  
...  

Abstract Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience. However, the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis. As a connecting component between arch sections, the connection joints have an important influence on the internal force distribution and failure mechanism of support arch. Therefore, a reasonable design of arch joints is the premise of rational support design. Taking Liangjia Coal Mine, a typical deep soft rock mine in China, as research background, this paper fully compared the most widely used joint types of confined concrete arch as analytical objects: flange joints and casing joints. The main failure modes of these two kinds of joints under bending moment are defined. Laboratory and numerical tests are carried out to study the mechanical characteristics of joints. Based on the M–θ curve, the influence law of different design parameters is analyzed, and the design principles of joints are proposed. The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects.


2012 ◽  
Vol 170-173 ◽  
pp. 68-71 ◽  
Author(s):  
Zhan Jin Li ◽  
Shi Bo Li ◽  
Xue Li Zhao

The floor heave is one of soft rock roadway distortion. Based on soft rock supporting theory and engineering practice, the program bolt-mesh-anchors and floor corner, bolts coupling support to control floor heave of the soft rock roadway is proposed. Numerical simulation results show that bolt-anchors can mobilize the strength of the deep adjacent rock, at the same time, and properly arranged floor corner bolts with high bending rigidity can cut the slip-line field and achieve the goal of controlling floor heave effectively.


2011 ◽  
Vol 255-260 ◽  
pp. 3711-3716 ◽  
Author(s):  
Ju Cai Chang ◽  
Guang Xiang Xie

Numerical simulation and field measurement were carried out to investigate into laws of deformation and movement and the evolving characteristics of the plastic region around the roadway based on engineering conditions of deep soft rock roadway in Wangfenggang colliery, Huainan Mining area. The mechanism of controlling the surrounding rock stability of soft rock roadway in deep coal mine was demonstrated. The supporting of soft rock roadway in deep coal mine must be compatible with deformation and failure characteristics of surrounding rock, and it can keep the stability of surrounding rock. The combined supporting with high strength and prestress bolting-anchoring and integral surrounding rock grouting reinforcement can effectively control the surrounding rock deformation of soft rock roadway in deep coal mine. But every working step must be pay attention to sequence on the time and space so that it can play an integral supporting effect. Research results are put into practice accordingly and good control effect has been achieved.


2019 ◽  
Vol 11 (22) ◽  
pp. 6243 ◽  
Author(s):  
Dong Wang ◽  
Yujing Jiang ◽  
Xiaoming Sun ◽  
Hengjie Luan ◽  
Hui Zhang

Improving the safety and stability of soft surrounding rock with nonlinear large deformation gives a strong guarantee for the safe mining and sustainable development of deep coal mines. In order to control the nonlinear large deformation of the surrounding rock in a deep soft rock roadway, this paper discusses the nonlinear large deformation mechanism and coupling support countermeasures of a typical engineering application at Xin’an coal mine in Gansu province, China. The series of experiments and theoretical analysis described in this paper reveal the phenomena, properties, and reasons for the nonlinear large deformation of soft surrounding rock in detail. Then, the type of nonlinear large deformation mechanism is determined and transformed from a composite one to a simple one. Based on experimental results and mechanism transformation, a suitable coupling support countermeasure, which contains the Constant Resistance Large Deformation (CRLD) bolt, steel mesh, floor hollow grouting cable, and steel fiber concrete, is proposed to reduce the nonlinear large deformation and the potential risk during mining. The application shows that the coupling support countermeasure can effectively reduce the nonlinear large deformation of the surrounding rock and help to maintain the stability of the deep soft rock roadway at Xin’an coal mine.


Sign in / Sign up

Export Citation Format

Share Document