Friction and Wear of Typical Tool Material at Elevated Temperature

2011 ◽  
Vol 199-200 ◽  
pp. 646-650 ◽  
Author(s):  
Hui Zhang ◽  
Jian Xin Deng ◽  
Ze Wu ◽  
Xing Ai ◽  
Jun Zhao

The friction and wear behavior of cutting tool materials keeps an issue. In this study, an high temperature tribometre (UMT-2) was used to investigated the tribology properties and mechanism of two kinds of typical cutting tool materials. Commonly used cemented carbide (ZU5) and ceramic (AT) were chosen. The characteristics as to wear rate, friction coefficient and worn surface were studied. From the results, we found that the ceramic had better wear resistance than the cemented carbide. The friction coefficient of cemented carbide decreased with the increase of ambient temperature while the ceramic exhibited an inverse tendency. Finally, the probable wear mechanism was discussed.

2010 ◽  
Vol 139-141 ◽  
pp. 414-417 ◽  
Author(s):  
Xiao Ming Jia ◽  
Jin Rong Chai

9Cr2Mo steel is widely used as measuring and cutting tool steel. The friction and wear behavior of 9Cr2Mo steel was investigated under dry friction and solid lubricant by wear tester. The experiment results show that the friction coefficient of 9Cr2Mo steel is 0.34~0.58 under dry friction and 0.035~0.06 under solid lubricant. With the increase of load , the friction coefficient decreases and the wearing capacity increases under two kinds of conditions. The wearing capacity of 9Cr2Mo steel under solid lubricant is great lower than it under dry friction. The friction process is smooth under solid lubricant. It indicated that the solid lubricant took effect in antifriction and antiwear of 9Cr2Mo steel.


2017 ◽  
Vol 728 ◽  
pp. 229-234 ◽  
Author(s):  
Suchalinee Mathurosemontri ◽  
Supaphorn Thumsorn ◽  
Satoshi Nagai ◽  
Hiroyuki Hamada

Friction and wear behavior of Polyoxymethylene/Poly (lactic acid) blends (POM/PLA) was investigated to study effect of PLA content on friction and wear properties. The sliding experiments were carried out by Frictoron EFM-III machine. POM blends sliding against the carbon steel (AISI 1045) counterpart under 200 N of pressure load, 100 mm/s of sliding speed for 60 minutes. The wear weigh loss was measured after wear experiment. Wear profile and worn surface were observed by SEM. It was found that friction coefficient of neat POM is lower than neat PLA. However, the incorporation of PLA into POM led to an increment of friction coefficient of POM blends both of 40% and 60% PLA content that over than neat POM and PLA. While wear weigh loss resulted the increasing with increasing of PLA content, which were supported by wear prolife photographs. The deformation of neat PLA and blends on worn surface originated from adhesive due to the thermal softening and melting behavior, while neat POM reveals the plough action behavior.


2015 ◽  
Vol 655 ◽  
pp. 27-31
Author(s):  
Han Qin Liang ◽  
Xiu Min Yao ◽  
Hui Zhang ◽  
Xue Jian Liu ◽  
Zheng Ren Huang

In the present work, SiC was pressureless solid state sintered with 3 wt% C and 0.6 wt% B4C as sintering additives. The friction and wear behavior of the PSSS SiC ceramics was investigated by using a block-on-ring tribometer. The wear volume and friction coefficient was measured. It is as expected that the friction coefficient increased with the elevation of the normal load and sliding speed. The microstructure of the worn surface was observed, based on which the wear mechanism was analyzed. Different degrees of oxidation during the friction process was found and the degree of oxidation was related to the severity of wear. The normal load was found to exert great influence on the wear of the SSiC ceramics.


Author(s):  
Vikram Bedekar ◽  
Deepak G. Bhat ◽  
Stephen A. Batzer ◽  
Larry Walker ◽  
L. F. Allard

There has been a growing concern about the reactivity at the tool/work-piece interface during machining, leading to lower tool life. The problem is more severe especially in the case of aerospace alloys such as Ti-6Al-4V and stainless steels. Recently, a new ultra hard ceramic material, AlMgB14, was reported with properties that show considerable promise as a cutting tool material for machining titanium alloys [1]. This paper investigates the chemical wear behavior of AlMgB14, in the machining of aerospace alloys. The mechanical properties of AlMgB14 are compared with leading cutting tool materials (WC-Co, Al2O3SiCw-TiC and Al2O3-TiC), which are used extensively in machining titanium and ferrous alloys. Materials characterization of candidate tool materials shows that AlMgB14 exhibits superior hardness, fracture toughness and abrasive wear resistance as compared to the other cutting tool materials. We also report on a study of chemical reactivity of tool materials (AlMgB14 and WC-6%Co) in machining various alloys such as Ti-6Al-4V and Fe-18Ni-8Cr. The chemical reactivity was investigated using diffusion tests conducted in vacuum at 1000°C for 120 hrs. Transverse sections of couples were characterized using electron probe micro analysis (EPMA), to determine the extent of diffusion zones. The results show that AlMgB14 shows considerably less reactivity with titanium alloys when compared with cemented carbide cutting tools. It was also observed that the boride reacts significantly with the iron based Fe-18Ni-8Cr alloy. The paper also reports on the evaluation of the free energy of formation of AlMgB14 using the thermochemical software program FactSage™.


1968 ◽  
Vol 15 (5) ◽  
pp. 227-232 ◽  
Author(s):  
Tadaaki Sugita ◽  
Mitsuhiko Furukawa ◽  
Heiji Yasui

2020 ◽  
Vol 46 (3) ◽  
pp. 3550-3557 ◽  
Author(s):  
Jingbao Zhang ◽  
Jingjie Zhang ◽  
Guangchun Xiao ◽  
Zhaoqiang Chen ◽  
Mingdong Yi ◽  
...  

1972 ◽  
Vol 94 (1) ◽  
pp. 12-18 ◽  
Author(s):  
M. T. Lavik ◽  
B. D. McConnell ◽  
G. David Moore

Results are presented for the bonding of thin, sintered, fluoride films of BaF2 and CaF2 with mono-aluminum phosphate. Friction and wear behavior of these films has been defined in terms of film compositional changes, film curing procedures, and substrate variations when subjected to varying levels of temperature and load. Mono-aluminum phosphate was found to greatly enhance the adhesion of the sintered fluoride film. There was a strong dependence of wear life at 1000 deg F on the mono-aluminum phosphate content of the film. Films containing 6 vol. percent phosphate appear to be near optimum and exhibited wear lives of 1,000,000 load cycles under sliding conditions in a dual rub-shoe device with friction coefficient levels in the order of 0.10 to 0.20. Near-optimum values were determined for cure temperature (950 deg C), and surface finish (23 μ in. rms) on rhodium-plated substrates. Graphite and gold were added to the aluminum phosphate bonded BaF2: CaF2 films. Both additives were found to lower the friction coefficient at room temperature.


2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


Sign in / Sign up

Export Citation Format

Share Document