The Confined Chord Error Algorithm for High Precision Machining Parametric Surface

2011 ◽  
Vol 201-203 ◽  
pp. 2334-2337 ◽  
Author(s):  
Zhi Qiang Zhang ◽  
Wen Jin Wang ◽  
Zhao Jian ◽  
Tai Yong Wang

The part’s surface quality of NC machining is influenced by the chord error greatly. The confined chord error algorithm for machining complex parametric surface is proposed for controlling the chord error. The arc length error is utilized to control the chord error of the interpolated point indirectly. The arc length error of interpolated point is computed by trapezia expressions, the coordinate and the first order derivative of interpolated point is computed by the interpolation algorithm. The computed error of confined chord error algorithm is discussed and the simulation indicate that the destined precision of the chord error can be satisfied by this algorithm.

2010 ◽  
Vol 458 ◽  
pp. 55-62
Author(s):  
Yong Jiang Hao ◽  
Zhi Qiang Zhang ◽  
Tai Yong Wang ◽  
Q.J. Liu ◽  
Zhi Feng Qiao

The part’s precision-machined quality of NC machining is influenced by the chord error greatly during precision machining. The confined chord error Algorithm for Machining Complex Parametric Curve is proposed for the complexity of the chord error. The information of the arc length error is utilized to control the chord error of the interpolated point indirectly. The arc length error of interpolated point is computed by Simpson expressions, the information of coordinate and the first order derivative of interpolated point is computed by the interpolation algorithm, so the computed difficulty is not increased greatly. The computed error of the algorithm is discussed and the simulation example of NURBS curve proves that the destined precision of the chord error can be satisfied by this algorithm.


2011 ◽  
Vol 291-294 ◽  
pp. 1764-1767
Author(s):  
Wei Li ◽  
Ming Ming Ma ◽  
Bin Hu

This paper introduced a polishing process for planarization of gallium nitride (GaN) wafer by polishing slurry that is made up by the chemical reaction with H2O2 solution and iron. Some different polishing parameters in the polishing process has been analyzed, which affect the surface quality of wafers, such as slurry particle size, polishing times, polishing slurry etc., and trying to improve the polishing process by optimization of the polishing parameters. The experimental result showed that this polishing method has an effect on the surface quality of GaN wafers, finally, the efficient and precision machining with surface roughness of GaN wafers of Ra0.81 nm has been gained by the CMP polishing process.


2014 ◽  
Vol 1003 ◽  
pp. 260-263
Author(s):  
Zhi Qiang Zhang ◽  
Wen Jin Wang ◽  
Jing Zhang ◽  
Jian Zhao ◽  
Li Ying Sun ◽  
...  

The NURBS curve interpolation algorithm based on parabolic interpolation error and the first-order Taylor expansion interpolation algorithm is proposed to improve part surface quality and chord error of NURBS curve interpolation algorithm. The part surface quality is improved effectively by the parabolic interpolation algorithm in the conduction that the previous point, the current point and the next point which was computed by the first order Taylor expansion interpolation algorithm were known. The effectiveness of this algorithm is proved by the NURBS curve interpolation simulation.


2012 ◽  
Vol 490-495 ◽  
pp. 1551-1554
Author(s):  
Jian Zhong Zhang ◽  
Xin Wang ◽  
Yue Zhang

It has been one of the difficulties that high-precision small hole on stainless steel is machined. The supersonic vibration boring acoustic system is installed in the lathe. The supersonic wave energy applies to tool to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Surface quality and shape precision is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of stainless steel are also summarized. The test results show that the ultrasonic vibration boring by double cutter is of very superior cutting mechanism and is a high-precision thin - long deep - hole machining of stainless steel materials, efficient cutting methods.


2020 ◽  
pp. 78-81
Author(s):  
B.Ya. Mokritskiy ◽  
D.A. Savinov ◽  
Ya.V. Konyuhova

The possibility of controlling the effectiveness of the cutting process taking into account the quality of replaceable inserts in high-precision machining of parts to prevent spindle imbalance and tool destruction with low quality of the inserts is considered. Keywords: cutting, replaceable insert, spindle, imbalance, machining accuracy. [email protected]


2011 ◽  
Vol 487 ◽  
pp. 303-307
Author(s):  
Jia Liang Guan ◽  
H.W. Lu ◽  
X.H. Xiao ◽  
Y.C. Wu ◽  
Z.D. Chen

A new way of precision machining was studied through the experiments of Electrolytic In-Process Dressing (ELID) precision grinding and ultra precision lapping and polishing for W-Mo metal alloy. First a 22nm(Ra) surface was obtained through the ELID grinding, last a 11nm(Ra) surface was obtained after the process of lapping and polishing with 0.1~0.3 N/cm2pressure, 60~100 r/min rotational speed and other optimized parameters. Meanwhile, the formation mechanism of ultra precision mirror surface of the alloy was also analyzed. The experiments prove surface quality of the work piece was guaranteed by ELID grinding, and which was also greatly affected by some parameters in lapping and polishing such as pressure, rotational speed.


2020 ◽  
Vol 66 (6) ◽  
pp. 358-374
Author(s):  
Junye Li ◽  
Lixiong Wang ◽  
Hengfu Zhang ◽  
Jinglei Hu ◽  
Xinming Zhang ◽  
...  

The solid-liquid two-phase abrasive flow precision machining technology is widely used in aerospace, precision machinery, the automotive industry and other fields, and is an advanced manufacturing technology that effectively improves the inner surface quality of workpieces. In this paper, the fifth-order variable-diameter pipe parts are researched. By discussing the collision between the abrasive particles and the wall surface, it is revealed that the material removal of the workpiece is caused by plastic deformation, and the mechanism of precision machining of the abrasive flow is clarified. Through numerical analysis and experimental research, it is found that the incident angle can affect the precision machining quality of the abrasive flow. When the inlet velocity of the abrasive flow is 45 m/s and the incident angle is 15°, the fifth-order variable-diameter pipe can obtain the best surface quality. Abrasive flow machining improves the surface quality of small holes better than that of large holes. To obtain uniform surface quality, it is necessary to use two-way machining to perform abrasive flow machining. The surface texture of the fifth-order variable-diameter pipe workpiece after precision machining by abrasive flow becomes clear and smooth, and the surface quality is significantly improved. The research results can provide theoretical guidance and technical support for the popularization and application of solid-liquid two-phase abrasive flow precision machining technology, with significant academic value and application value.


2009 ◽  
Vol 74 ◽  
pp. 85-88
Author(s):  
Hui Min Leung ◽  
Hong Bin Yu ◽  
Guang Ya Zhou ◽  
A. Senthil Kumar ◽  
Fook Siong Chau

A liquid tunable diffractive/refractive hybrid lens which combines the use of high precision diamond turning and soft lithography is developed in this work. This diffractive/refractive hybrid lens comprises a Fresnel lens and a tunable refractive lens automatically aligned during the fabrication process. Multiple PDMS hybrid lens devices can be fabricated from the diamond-turned master mould and AFM results show that the surface quality of the PDMS lenses meets the requirements for optical purposes. The hybrid lens is tested with a green laser (λ = 532nm) and experimental results demonstrate a tunability of more than 20mm.


Author(s):  
Jing Zhang ◽  
Jiexiong Ding ◽  
Qingzhao Li ◽  
Qicheng Ding ◽  
Zhong Jiang ◽  
...  

In the multi-axis high-speed and high-precision machining process, the contouring error and the feed rate of tool tip and affect the quality of machined workpiece and the processing efficiency, respectively. The faster feed motion will result in greater tracking error of each axis. The contouring error which directly affects the quality of machined part is caused by the tracking errors of the axes. Obviously, it is difficult to improve the contouring accuracy and increase the feed rate simultaneously. To this end, a novel optimization model is developed here based on the model predictive control method. First, the feed servo model of translational and rotary axes are established, and the contouring error model is afterwards constructed. Subsequently, the optimization algorithm is derived to achieve the high processing speed, and input constraints are addressed to avoid violation of the performance limitation of the drivers. In addition, contouring error constraint, which is obtained by calculating the contouring error of the processed path, is addressed to high contour accuracy. Finally, a simulation is conducted to verify the effectiveness and superiority of the proposed method.


2013 ◽  
Vol 690-693 ◽  
pp. 3307-3311
Author(s):  
Jian Zhong Zhang ◽  
Nian Cheng Zhang ◽  
Yue Zhang

It has been one of the difficulties that high-precision thin hole is machined. The supersonic vibration reaming acoustic system is installed in the lathe. The supersonic wave energy applies to reamer to create pulse power on the cutting process. The separating vibration cutting is achieved to make the pulse force. The tests on reaming surface quality and precision are carried. The quality of surface and accuracy machined by this method is more than that by grinding. The reaming process is stability. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Surface quality and shape precision is greatly improved. The regulations of the ultrasonic vibration reaming thin hole in hardened steel are also summarized. The test results show that the ultrasonic vibration reaming by reamer is of very superior cutting mechanism. It is efficient cutting methods for high-precision thin-hole machining of hardened materials.


Sign in / Sign up

Export Citation Format

Share Document