On the Mechanical and Physical Properties of Recycled Polymer Matrix Composites Reinforced with Cooper Powder

2007 ◽  
Vol 23 ◽  
pp. 127-130
Author(s):  
Victoria Chifor ◽  
Radu L. Orban ◽  
Nicolae Jumate

The influence of cooper powder as reinforcing phase on the main mechanical and physical properties of recycled polyethylene matrix composites has been investigated. The obtained elastic modulus increases up to the upper adopted reinforcing level (∼10 [vol. %]), while elongation and fracture energy decrease. The UTS values remain quite constant within the reinforcing content interval. Electrical resistivity proved to depend, to a great extent, on the reinforcing particle distribution inside the polymer matrix. It has a sudden drop when a continuous electrical conductive path is formed at a critical volume fraction of metal particles. At a lower content, instead, it slowly decreases as reinforcing powder content increases. Both the mechanical properties and values for electrical resistivity are similar to those published for polymers obtained directly from monomers.

2021 ◽  
Vol 12 (2) ◽  
pp. 391-399
Author(s):  
Yusup Hendronursito ◽  
◽  
Asep Andri Saputra ◽  
Tumpal Ojahan Rajaguguk ◽  
Slamet Sumardi ◽  
...  

Basalt rock has great potential in Lampung Province but is only used as a building construction material. Basalt has superior characteristics such as abrasion/wear resistance, compressive strength and chemical reaction resistance making it suitable as a filler or reinforcement for composites. This study aims to determine the effect of basalt rock powder sintering as a reinforcing filler on the mechanical and physical properties of polymer matrix composites. The parameters used included variations in sintering temperature: 8500C, 9500C, and 1.0500C, variations in particle size: 100 < X < 150 mesh, 150 < Y < 200 mesh and 200 < Z < 270 mesh, and the volume fraction comparison of basalt sintering powder and polyester resin. 70: 30%, 80: 20%, and 90: 10%. The experimental design uses the L9 3^3 taguchi orthogonal array run 9 specimens. Taguchi analysis shows that the parameters that affect the mechanical and physical properties are the sintering temperature. sintering temperature contributed 61.77% to wear, and 87.58% to compressive strength, and 95.32% to composite density. The experimental results with the best value obtained a wear value of 0.235 x 10-7mm2 / kg, a compressive strength of 118.873 MPa, and a density of 2.272 gr/cm3.


2012 ◽  
Vol 616-618 ◽  
pp. 1808-1812
Author(s):  
Xiao Chuan Li ◽  
Xiang Yong Huang

Heat conduction performance of particle dispersive composites has been numerically investigated by using Finite volume method (FVM) and fractal theory. The effects of the thermal conductivity of particle and polymer matrix, the volume fraction of conductive particle, the dispersion and reunion form of particles on the effective thermal conductivity of composites are analyzed in detail. Results from the research indicate that thermal conductivities of composites will increase nonlinearly along with the increase of filling fraction of particles. Keeping the filling fraction constant, the dispersion and reunion form and direction of particles has significant effect on heat conduction performance of composite. Simple use of high thermal conductivity particles has limited effect on thermal performance of composites. Enhancing the contacts of particle in the direction of heat exchange and forming high heat transfer channels are the main and economical ways to improve heat conduction performance of particulate filled polymer matrix composites.


1993 ◽  
Vol 304 ◽  
Author(s):  
A. Lekatou ◽  
Y. Qian ◽  
S. E. Faidi ◽  
S. B. Lyon ◽  
N. Islam ◽  
...  

AbstractDisordered glass microsphere-epoxy composites have been used in a study of diffusional, electrical and mechanical effects of interfaces in polymer-matrix composites exposed to pure water. Mass gain measurements on composites manufactured from 10 μm silane-treated microspheres indicate initial near-Fickian diffusion with water saturation times on the order of 500 h. However, electrical measurements indicate water transport at rates at least 100 times more rapid. This behaviour is interpreted in terms of a cellular microstructure with areas of low cross-link density separating highly cross-linked areas. Rapid water transport can thus occur in areas of low cross-linking, even without the contribution of connected clusters of particles where rapid interfacial water transport occurs substantially ahead of the main diffusion front. Reductions in ultimate tensile strength and fracture energy in dry and water-saturated tensile test specimens are observed with increasing volume fraction of glass spheres but with a distinct plateau between about 6% and 12% Vf. This can be explained in terms of secondary cracking below the percolation threshold which causes toughening of the composite. However, a few % above pc (≍ 16%), most particles belong to the percolating cluster and the primary crack can grow without hindrance.


Sign in / Sign up

Export Citation Format

Share Document