Effect of Adhesive Thickness on the Impact Toughness of Butt-Joints

2011 ◽  
Vol 230-232 ◽  
pp. 1350-1354 ◽  
Author(s):  
Min You ◽  
Jing Rong Hu ◽  
Xiao Ling Zheng ◽  
Ai Ping He ◽  
Cun Jun Chen

The effect of the adhesive thickness on the impact toughness of the adhesively bonded steel joint under impact loading is studied using the experimental method. The results obtained show that the impact toughness increases when the adhesive thickness increased then it decrease as the adhesive thickness increase. When the curing time is set as a constant, the higher the curing temperature is, the lower the impact toughness of the joint. The optimum thickness of the adhesive layer for the specimen of impact toughness test cured at 60 C for 1 h is 0.6 mm and it is 0.4 mm to 0.6 mm for the specimen cured 1 h at temperature of 90 C or higher than it. It is recommended using the notched specimen to decrease the testing deviation.

2012 ◽  
Vol 602-604 ◽  
pp. 2279-2282 ◽  
Author(s):  
Xiao Ling Zheng ◽  
Ling Wu ◽  
Min You ◽  
Kai Liu ◽  
Mei Li

The effect of the adhesive thickness on the impact toughness of the adhesively bonded steel butt joint during Izod impact test and the failure procedure is studied using the finite element method software ABAQUS. The results obtained show that the time with the peak stress Seqv occurred is corresponding to the element failure. And much higher peak stress might be subjected by the element near the bottom of the joint under impact load. The failure time of the element becomes little longer when the adhesive layer thickness increased from 0.1 mm to 0.4 mm. But the peak value of the Seqv decreases and the damage limit of the strain increased evidently as the adhesive thickness increased from 0.2 mm to 0.4 mm.


2012 ◽  
Vol 166-169 ◽  
pp. 1904-1907
Author(s):  
Min You ◽  
Chun Zhi Mei ◽  
Wen Jun Liu ◽  
Jing Rong Hu ◽  
Ling Wu

The effect of the temperature and immersed time of the alkali solution on the impact toughness of the adhesively bonded steel single lap joint under impact loading is studied using the experimental method. The results obtained show that the impact toughness of the specimen increased when the immersed time increased then it decreased as it beyond 3 days. When the immersed time is longer than 72 h, the higher the temperature is, the lower the impact toughness of the joint. The moisture absorption of the adhesive layer with the immersed time was also investigated and it was found that there is a relationship to the impact toughness of the adhesively bonded single lap joint. The epoxy adhesive layer was analyzed with FT-IR and it was found that the hydroxyl enhanced and bonding strength may increase after 72 h immersed in alkali solution.


2021 ◽  
Author(s):  
Grégory Alexandre Toguyeni ◽  
Jens Fernandez-Vega ◽  
Richard Jones ◽  
Martin Gallegillo ◽  
Joachim Banse

Abstract A solution to prevent liner wrinkling in Mechanically Lined Pipes (MLP) with a standard 3.0mm thick liner during reeling, without the use of pressurisation, has been developed in the form of the GluBi® lined pipe. The liner being adhesively bonded to the outer pipe, its integrity is maintained despite the global plastic strain applied by the installation method. This new linepipe product has been qualified for offshore use through testing accompanied by a detailed Finite Element Analysis programme to fully capture the pipe and adhesive behaviours under and range of temperatures and loading conditions. The objective of this analysis program was to investigate the reelability of the GluBi® pipe. The instalability was defined as the capability of the pipe to tolerate cyclic plastic deformation representative of a typical pipeline installation by reeling without the formation of wrinkling of the CRA liner, and to maintain the integrity of the adhesive layer, particularly near the weld overlay at the pipe ends. Important areas of the GluBi® pipe design are the pipe extremities, particularly the transition between the liner and the weld overlay length. A detailed Finite Element model of the pipe was created. It captured all stages of the pipe manufacturing: pipe lining, hydrostatic expansion, adhesive curing, overlay weld deposition and reeling simulation. The pipe modelled was 312.1mm OD × 19.7mm WT SMLS 450 with a nominal 3.0mm thick Alloy 625 liner. An important validation work was performed to obtain a precise material response of the adhesive layer between liner and outer pipe. The adhesive mechanical properties were thus assessed in shearing and peeling over a range of temperatures covering all possible manufacturing and installation conditions. The model's elements and adhesive property modelling were validated against physical test results. Sensitivity analyses were done on the adhesive curing temperature, the geometry of the adhesive transition between the liner and the overlay weld at the pipe ends and on the liner thickness. The model was subjected to reeling simulation corresponding to Subsea 7's reel-lay vessels. The liner's integrity post reeling was assessed according to a range of acceptance criteria. These studies made it possible to establish parameter ranges for the safe installation of the linepipe.


2003 ◽  
Vol 38 (3) ◽  
pp. 233-245 ◽  
Author(s):  
T Yokoyama

The tensile strength and energy absorption of adhesive butt joints at high rates of loading are determined with a tensile split Hopkinson bar using a cylindrical specimen. A commercially available single-component cyanoacrylate adhesive (instantaneous adhesive) and two different adherend materials are used in the adhesion tests. The impact tensile strength of the cyanoacrylate adhesive butt joints is determined from the applied tensile stress history at failure initiation. The impact absorbed energy is obtained by numerical integration of dynamic tensile load-adhesive deformation data. Comparative tension tests at low and intermediate rates of loading are performed on an Instron testing machine. An axisymmetric finite element analysis is carried out to investigate the stress distributions in the adhesive layer of the cyanoacrylate adhesive butt joints. The effects of loading rate, adherend material and adhesive layer thickness on the tensile strength and energy absorption of the cyanoacrylate adhesive butt joints are examined in detail. It is shown that the joint tensile strength increases significantly with increasing loading rate and is greatly affected by both the adhesive layer thickness and the adherend materials. The limitations of the technique are discussed.


2016 ◽  
Vol 836 ◽  
pp. 78-82 ◽  
Author(s):  
Sugiman ◽  
Ilham Akbar ◽  
Emmy Dyah Sulistyowati ◽  
Paryanto Dwi Setyawan

The paper presents the static strength of adhesively bonded steel joints aged in deionized water at a temperature of 60°C for 15 days at various adhesive thicknesses from 0.1 mm to 0.5 mm. Water uptake and the bulk adhesive tensile properties after aged in the same environment as the joints were also presented. It has been shown that water diffusion into the adhesive is non Fickian. The absorbed water in the adhesive significantly decreases the mechanical properties and it affects the static strength of the bonded steel joints. The effect of water is shown to be significant when the adhesive thickness is thicker than 0.2 mm as the static strength decreases sharply. This information is useful when designing the adhesive joints using thick adhesive layer exposed in moist environment.


2012 ◽  
Vol 602-604 ◽  
pp. 2096-2099
Author(s):  
Min You ◽  
Ling Wu ◽  
Hai Zhou Yu ◽  
Jing Rong Hu ◽  
Mei Li

The effect of the shock temperature and time on the impact toughness of the adhesively bonded steel butt joint under Charpy or Izod impact test is studied using the experimental method. The results obtained show that the impact toughness decreases when the shock temperature increased. When the curing time, temperature as well as the open assembly time was set as constant, the higher the shock temperature is, the lower the impact toughness of the joint. Comparing to the Charpy impact test, the Izod impact test is more sensitive to the shock temperature. When the shock temperature is set at a value not less than 300 C, the impact toughness measured is nearly the same as zero due to decomposition, carbonization and volatilization of the adhesive.


2000 ◽  
Vol 49 (5) ◽  
pp. 561-566
Author(s):  
Makoto IMANAKA ◽  
Koichi HIDAKA ◽  
Takafumi TURUI ◽  
Yojirou AKIZUKI ◽  
Akira MATAYOSHI

2014 ◽  
Vol 488-489 ◽  
pp. 542-545 ◽  
Author(s):  
Min You ◽  
Kai Liu ◽  
Xiang Li ◽  
Ling Wu ◽  
Mei Li

The response of the equivalent stress (Seqv) in adhesively bonded steel butt joint and the adhesive bondline during Izod impact test is studied using the finite element method (FEM) software ANSYS. The results obtained show that the highest value of the stressSeqvalmost higher than the yield strength of the adherend reached within about 0.1 ms. The contour diagram of the stressSeqvis symmetrical to the axis along the half height of the specimen both in whole adhesively bonded steel butt joint and the adhesive layer. The peak value of theSeqvin adhesive increases first and then decreased when the action of the impact was over. The stressSeqvin both ends of the specimen kept to a relative lower value during impact procedure.


2002 ◽  
Author(s):  
Samar Teli ◽  
Erol Sancaktar

The stress interference effects adhesively bonded scarf and butt joints were investigated when an additional adhesive layer was incorporated in overall joint design. Finite element models were developed and analyzed to compare interfacial stress states and peak stresses on the double adhesive layer joints with those on the single adhesive layer joints with respect to the scarf angle, adhesive layer separation (ALS) and adhesive modulus. This comparison was done in terms of stress ratio calculated as a ratio of interfacial peak stress on double adhesive layer joint to that an single adhesive layer joint. The tensile task results were correlated with the finite element analysis (FEA) results in terms of load ratio calculated as a ratio of failure load on single adhesive layer joint to that on double adhesive layer joint. Six scarf angles (15°, 30°, 45°, 60°, 75° and 90°), three ALS and adhesives were analyzed for this study.


Sign in / Sign up

Export Citation Format

Share Document