The Research on Freeze-Thaw De-Emulsification Technology in Enzyme-Assisted Aqueous Extraction Processing

2011 ◽  
Vol 236-238 ◽  
pp. 2598-2609 ◽  
Author(s):  
Yang Li ◽  
Lian Zhou Jiang ◽  
Xiao Nan Sui

Experiments were carried out to analysis optimization of freeze-thaw regression model with Response Surface Analysis Method. The optimal response result is: freeze temperature: -18°C, freeze time: 12.5h, thaw temperature: 57°C, released oil yield: 93.16%, total free oil yield rate: 89.28%. The mechanism of demulsification was studied using Micro-imaging, SEM cooling stage, DSC, FTIR spectrometer. DSSP was changed and part of hydrogen bond was broken and α-helix structure conversed to random coil during the freeze process were found the effective freeze-thaw method to destabilize the emulsion.

Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 51
Author(s):  
Jorge Humberto Limón-Pacheco ◽  
Natalie Jiménez-Barrios ◽  
Alejandro Déciga-Alcaraz ◽  
Adriana Martínez-Cuazitl ◽  
Mónica Maribel Mata-Miranda ◽  
...  

Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO2-NP (0–100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO2-NPs were amorphous particles and aggregated in saline and culture media. Both astrocytes and neurons treated with SiO2-NPs showed alterations in cell morphology and changes in the IR spectral regions corresponding to nucleic acids, proteins, and lipids. The analysis by the second derivative revealed a significant decrease in the signal of the amide I (α-helix, parallel β-strand, and random coil) at the concentration of 10 µg/mL in astrocytes but not in neurons. IQ mapping confirmed changes in nucleic acids, proteins, and lipids in astrocytes; cell death was higher in astrocytes than in neurons (10–100 µg/mL). We conclude that astrocytes were more vulnerable than neurons to SiO2-NPs toxicity. Therefore, the evaluation of human exposure to SiO2-NPs and possible neurotoxic effects must be followed up.


2011 ◽  
Vol 236-238 ◽  
pp. 2221-2224
Author(s):  
Kui Hua Zhang ◽  
Xiu Mei Mo

In order to improve water-resistant ability silk fibroin (SF) and SF/P(LLA-CL) blended nanofibrous scaffolds for tissue engineering applications, methanol vapor were used to treat electrospun nanofibers. SEM indicated SF and SF/ P(LLA-CL) scaffolds maintained nanofibrous structure after treated with methanol vapor and possessed good water-resistant ability. Characterization of 13C NMR clarified methanol vapor induced SF conformation from random coil or α- helix to β-sheet. Moreover, treated SF/ P (LLA-CL) nanofibrous scaffolds still kept good mechanical properties. Methanol vapor could be ideal method to treat SF and SF/ P(LLA-CL) nanofibrous scaffolds for biomedical applications.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (6) ◽  
pp. 52-59 ◽  
Author(s):  
J.B. Pallix ◽  
C.H. Becker ◽  
N. Newman

AbstractAn overview is presented of a recently developed surface analysis method that combines (1) desorption of neutral atoms and molecules from a sample, typically by sputtering, (2) efficient uniform ionization close to but above the surface by an intense ultraviolet laser beam, and (3) time-of-flight mass spectrometry. This technique, surface analysis by laser ionization, or SALI, provides extremely efficient and sensitive quantitative analysis of surfaces and materials with high depth resolution. Essentially any type of material can be analyzed as evidenced by the examples presented here: the Au-GaAs system, a phosphor-silicate glass, and a bulk polymer.


2021 ◽  
Vol 47 (1) ◽  
pp. 164-173
Author(s):  
Mohammad Mehdi Khabiri ◽  
Bahareh Ebrahimialavijeh

Improving the subgrade performance and increasing their efficiency can lead to improving the operation and increasing the life of the pavement. One of the common solutions to improve the resistance and engineering properties of the soils is using the stabilizing materials. Using the waste materials as a stabilizer in the soil can lead to a reduction in project costs and help the protection from the environment. In this study, emulsion bitumen and crushed waste tile are used to stabilize the sand dune which is soil with low bearing capacity and resistance properties. In the present study, the emulsion bitumen and crushed waste tile have been used. The effect of dimensions and percentage of crushed tile with different percentages of emulsion bitumen on the compressive pressure and bearing capacity as well as the compressive strength after applying freeze-thaw cycle. The results indicate that the addition of crushed waste tile increases the compression strength and bearing capacity and the tile with a higher dimension has shown more effectiveness. Applying the freeze-thaw cycle has reduced the compression strength and increasing the number of cycles has increased the resistance drop rate. Soil stabilized with coarse-grained tile has more resistance drop rate which increases by increasing the tile percentage. Then, the 3D graph and the recommended function related to each parameter investigated in the test were provided using the response surface analysis method.


2002 ◽  
Vol 93 (4) ◽  
pp. 1377-1383 ◽  
Author(s):  
Takaya Tsueshita ◽  
Salil Gandhi ◽  
Hayat Önyüksel ◽  
Israel Rubinstein

The purpose of this study was to elucidate the interactions between pituitary adenylate cyclase-activating peptide (PACAP)-(1—38) and phospholipids in vitro and to determine whether these phenomena modulate, in part, the vasorelaxant effects of the peptide in the intact peripheral microcirculation. We found that the critical micellar concentration of PACAP-(1—38) was 0.4–0.9 μM. PACAP-(1—38) significantly increased the surface tension of a dipalmitoylphosphatidylcholine monolayer and underwent conformational transition from predominantly random coil in saline to α-helix in the presence of distearoyl-phosphatidylethanolamine-polyethylene glycol (molecular mass of 2,000 Da) sterically stabilized phospholipid micelles (SSM) ( P < 0.05). Using intravital microscopy, we found that aqueous PACAP-(1—38) evoked significant concentration-dependent vasodilation in the intact hamster cheek pouch that was significantly potentiated when PACAP-(1—38) was associated with SSM ( P < 0.05). The vasorelaxant effects of aqueous PACAP-(1—38) were mediated predominantly by PACAP type 1 (PAC1) receptors, whereas those of PACAP-(1—38) in SSM predominantly by PACAP/vasoactive intestinal peptide type 1 and 2 (VPAC1/VPAC2) receptors. Collectively, these data indicate that PACAP-(1—38) self-associates and interacts avidly with phospholipids in vitro and that these phenomena amplify peptide vasoactivity in the intact peripheral microcirculation.


2018 ◽  
Vol 25 (33) ◽  
pp. 4066-4083 ◽  
Author(s):  
Ana-Maria Chiorcea-Paquim ◽  
Teodor Adrian Enache ◽  
Ana Maria Oliveira-Brett

Alzheimer’s disease (AD) is a widespread form of dementia that is estimated to affect 44.4 million people worldwide. AD pathology is closely related to the accumulation of amyloid beta (Aβ) peptides in fibrils and plagues, the small oligomeric intermediate species formed during the Aβ peptides aggregation presenting the highest neurotoxicity. This review discusses the recent advances on the Aβ peptides electrochemical characterization. The Aβ peptides oxidation at a glassy carbon electrode occurs in one or two steps, depending on the amino acid sequence, length and content. The first electron transfer reaction corresponds to the tyrosine Tyr10 amino acid residue oxidation, and the second to all three histidine (His6, His13 and His14) and one methionine (Met35) amino acid residues. The Aβ peptides aggregation and amyloid fibril formation are electrochemically detected via the electroactive amino acids oxidation peak currents decrease that occurs in a time dependent manner. The Aβ peptides redox behaviour is correlated with changes in the adsorption morphology from initially random coiled structures, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to aggregates, protofibrils and two types of fibrils, corresponding to the Aβ peptides in a β-sheet configuration, observed by atomic force microscopy. Electrochemical studies of Aβ peptides aggregation, mediated by the interaction with metal ions, particularly zinc, copper and iron, and different methodologies concerning the detection of Aβ peptide biomarkers of AD in biological fluids, using electrochemical biosensors, are also discussed.


2002 ◽  
Vol 8 (5) ◽  
pp. 381-387 ◽  
Author(s):  
Hui Lin ◽  
Chhabil Dass

Electrospray ionization-mass spectrometry (ESI-MS) was employed to study methanol-induced conformational changes in adrenocorticotrophic hormone (ACTH). ACTH, a 39–residue peptide, is a member of the proopiomelanocortin family of peptides. Charge-state distribution (CSD) and hydrogen–deuterium (H/D) exchange were used to monitor the conformational changes as a function of methanol concentration. The latter experiments were conducted via time-resolved ESI-MS in a continuous-flow apparatus. The CSD and the H/D exchange experimental data both reveal that ACTH exists, presumably in a random coil open structure in aqueous media, but assumes a more compact helical conformation with increased concentration of methanol. The H/D exchange experiments also reveal that 79% of ACTH is present as α-helix in mixed water-methanol solvent media.


2012 ◽  
Vol 41 (10) ◽  
pp. 1374-1376 ◽  
Author(s):  
Yuki Takechi ◽  
Chiharu Mizuguchi ◽  
Masafumi Tanaka ◽  
Toru Kawakami ◽  
Saburo Aimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document