Influences of Deviatoric Stress on the Soil-Water Characteristic Curve

2011 ◽  
Vol 243-249 ◽  
pp. 2456-2459
Author(s):  
Xiang Wei Fang ◽  
Shu Ping Jiang ◽  
Chun Ni Shen ◽  
Yun Xie ◽  
Gang Li

The soil-water characteristic curve (SWCC) is one of the major research subjects in unsaturated soil mechanics. To study the influence of deviatoric stress on the SWCC of an unsaturated soil, a series of triaxial drained shear tests by controlling constant net mean stress and suction were conducted. It was found that the SWCC was dependent on deviatoric stress. A unified SWCC equation was proposed including not only water content and suction, but also net mean stress and deviatoric stress.

2019 ◽  
Vol 56 (8) ◽  
pp. 1059-1069 ◽  
Author(s):  
Delwyn G. Fredlund

Routine geotechnical engineering practice has witnessed a significant increase in the usage of unsaturated soil mechanics principles. Laboratory measurement of the soil-water characteristic curve (SWCC) for a soil has been labelled as a primary reason for the improved understanding of unsaturated soil behaviour. Laboratory measurement of the “shrinkage curve” has yielded further insight into the estimation of unsaturated soil property functions (USPFs). The USPFs provide the necessary information for the simultaneous numerical modeling of the saturated and unsaturated portions of the soil profile. This paper presents a state-of-practice summary of the engineering protocols that have emerged amidst the numerous research studies reported over the past couple of decades. It also introduces issues related to hysteresis associated with the SWCC and suggests a pathway forward.


2000 ◽  
Vol 37 (5) ◽  
pp. 963-986 ◽  
Author(s):  
Delwyn G Fredlund

The implementation of unsaturated soil mechanics into geotechnical engineering practice requires that there be a paradigm shift from classical soil mechanics methodology. The primary drawback to implementation has been the excessive costs required to experimentally measure unsaturated soil properties. The use of the soil-water characteristic curve has been shown to be the key to the implementation of unsaturated soil mechanics. Numerous techniques have been proposed and studied for the assessment of the soil-water characteristic curves. These techniques range from direct laboratory measurement to indirect estimation from grain-size curves and knowledge-based database systems. The soil-water characteristic curve can then be used for the estimation of unsaturated soil property functions. Theoretically based techniques have been proposed for the estimation of soil property functions such as (i) coefficient of permeability, (ii) water storage modulus, and (iii) shear strength. Gradually these estimations are producing acceptable procedures for geotechnical engineering practices for unsaturated soils. The moisture flux ground surface boundary condition is likewise becoming a part of the solution of most problems involving unsaturated soils. The implementation process for unsaturated soils will still require years of collaboration between researchers and practicing geotechnical engineers.Key words: unsaturated soil mechanics, soil suction, unsaturated soil property functions, negative pore-water pressure, matric suction, soil-water characteristic curve.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jun Feng ◽  
Guangze Zhang

For the unsaturated soil in Feidong China, this study examined the suction stress characteristics based on the soil-water characteristic curve (SWCC), which was different from traditional research ideas. At the same time, the unsaturated consolidation device was adopted for SWCC tests, with consideration of the influence of yielding stress of soil, which was different from the traditional test approach of the soil-water characteristic curve. The results were estimated using the van Genuchten model, which was revealed that this is well-fit for the studied unsaturated soil, and the triaxial shear-strength tests were conducted with suction control. Then, the suction stress characteristic curve (SSCC) was analyzed, and SWCC-predicted data were compared with triaxial test-derived suction stress data. For the studied unsaturated soil, the deviatoric stress increased with the net inner stress p − u a at the same matric suction. At the same net inner pressure, the deviatoric stress increased with the matric suction, which verified the hardening activity of matric suction on the tested unsaturated soil strength. Besides, triaxial test-derived suction stress data greatly conformed to SWCC data-derived SSCC that was determined using identical parameters used in the SWCC model.


2021 ◽  
Vol 337 ◽  
pp. 02002
Author(s):  
Johnatan Ramos-Rivera ◽  
Daniel Parra-Holguín ◽  
Yamile Valencia-González ◽  
Oscar Echeverri-Ramírez

In unsaturated soil mechanics, many attempts have been made to estimate the SWCC based on soil texture and grain-size distribution. This paper proposes a simplified method to estimate the soil-water characteristic curve (SWCC) for both coarse and fine-grained soils using SWCC data and machine learning computer code in the Aburra Valley. Fredlund and Xing parameters has been used to estimate the SWCC correlations. Soil samples collected from field survey were subjected to laboratory testing, SWCCs were estimated using filter paper method. Each SWCC data set from Aburra Valley was fitted with Fredlund and Xing curve using multiple regression analysis, correlations were derived for those four parameters based on predictors derived from machine learning. The proposed method gives a good estimation and low residual errors of the SWCC.


2011 ◽  
Vol 261-263 ◽  
pp. 1039-1043
Author(s):  
Yu You Yang ◽  
Qin Xi Zhang ◽  
Gui He Wang ◽  
Jia Xing Yu

A soil water characteristic curve (SWCC) can describe the relationship between unsaturated soil matric suction and water content. By analyzing and researching the test data of the soil water characteristic curve researchers can initially establish the SWCC equation and apply this equation to the actual engineering analysis. In another words, this article is based on the fluid-solid coupling theory of unsaturated soil used to analyze and study the problem of land subsidence caused by tunnel construction. Numerical calculations show that the coupling results agree well with the measured curve works.


2010 ◽  
pp. 491-494
Author(s):  
Chun-Ni Shen ◽  
Xiang-Wei Fang ◽  
Zheng-Han Chen ◽  
Zheng-Bin Zhou

2020 ◽  
Vol 21 (4) ◽  
pp. 317-330 ◽  
Author(s):  
Qian Zhai ◽  
Harianto Rahardjo ◽  
Alfrendo Satyanaga ◽  
Guo-liang Dai ◽  
Yan-jun Du

2019 ◽  
Vol 56 (4) ◽  
pp. 505-513
Author(s):  
Qian Zhai ◽  
Harianto Rahardjo ◽  
Alfrendo Satyanaga

The multiphase flow (including liquid flow and air flow) in unsaturated soil is related to many engineering problems such as contaminant transport, rainwater infiltration, and soil-water evaporation. It is proven that water flow in unsaturated soil can be estimated using the concept of the pore-size distribution function. Many models have been proposed to estimate the water flow or water permeability function, kw, from the soil-water characteristic curve (SWCC). On the other hand, a limited model has been proposed to estimate the air flow or air permeability function, ka, from the SWCC. Most of the models used for the estimation of the air permeability functions are empirical, and they are dependent on the empirical parameters. In this paper, the relative air coefficient of permeability was estimated using the concept of the pore-size distribution function. In the method proposed in this paper, no empirical parameters were adopted, and the estimation results purely depended on the soil-water characteristic curve. The proposed method was verified against experimental data from published literature.


2018 ◽  
Vol 162 ◽  
pp. 01014
Author(s):  
Abdul-Kareem Esmat Zainal ◽  
Shaimaa Hasan Fadhil

Soil-Water Characteristic Curve (SWCC) is an important relationship between matric suction and volumetric water content of soils especially when dealing with unsaturated soil problems, these problems may include seepage, bearing capacity, volume change, etc. where the matric or total suction may have a considerable effect on unsaturated soil properties. Obtaining an accurate SWCC for a soil could be cumbersome and sometimes it is time consuming and needs effort for some soils, either through laboratory tests or through field tests. Accurate prediction of this curve can give more precise expectations in design or analysis that include some unsaturated soil properties, which can save more effort and time. This work will concentrate on proposing a new approach for determining the SWCC using Artificial Neural Network (ANN) depending on some soil properties (air-entry point and residual degree of saturation) through computer software MatLab as a tool for ANN. The new approach is to plot the SWCC curve points instead of obtaining the parameters used in Brooks and Corey (BC) Model (1964), van Genuchten (VG) Model (1980), or Fredlund and Xing (FX) Model (1994). Results showed close agreement in determination of the SWCC by verification of the ANN results with an additional curve sample.


1996 ◽  
Vol 33 (3) ◽  
pp. 379-392 ◽  
Author(s):  
S K Vanapalli ◽  
D G Fredlund ◽  
D E Pufahl ◽  
A W Clifton

Experimental studies on unsaturated soils are generally costly, time-consuming, and difficult to conduct. Shear strength data from the research literature suggests that there is a nonlinear increase in strength as the soil desaturates as a result of an increase in matric suction. Since the shear strength of an unsaturated soil is strongly related to the amount of water in the voids of the soil, and therefore to matric suction, it is postulated that the shear strength of an unsaturated soil should also bear a relationship to the soil-water characteristic curve. This paper describes the relationship between the soil-water characteristic curve and the shear strength of an unsaturated soil with respect to matric suction. Am empirical, analytical model is developed to predict the shear strength in terms of soil suction. The formulation makes use of the soil-water characteristic curve and the saturated shear strength parameters. The results of the model developed for predicting the shear strength are compared with experimental results for a glacial till. The shear strength of statically compacted glacial till specimens was measured using a modified direct shear apparatus. Specimens were prepared at three different water contents and densities (i.e., corresponding to dry of optimum, and wet of optimum conditions). Various net normal stresses and matric suctions were applied to the specimens. There is a good correlation between the predicted and measured values of shear strength for the unsaturated soil. Key words: soil-water characteristic curve, shear strength, unsaturated soil, soil suction, matric suction.


Sign in / Sign up

Export Citation Format

Share Document